[R-sig-ME] Zero inflated negative binomial mixed models - glmmADMB help
dave fournier
davef at otter-rsch.com
Fri Mar 11 18:14:26 CET 2016
I like to use to save.dir option of glmmadmb and run models from the
command line
using the file glmmadmb.dat and glmmadmb.pin.
If you run the model from the command line and look at the
eigenvalues of the Hessian in the file glmmadmb.eva you will see
unsorted: 0.8299209075 0.8342404973 0.7590373248 0.7698518484
0.7273714834 0.8736779466 0.6861389165 0.6374567379 0.9724466982
-4.668064218e-06 0.004088060076 0.001527386956 0.2224415205
sorted: -4.668064218e-06 0.001527386956 0.004088060076
0.2224415205 0.6374567379 0.6861389165 0.7273714834 0.7590373248
0.7698518484 0.8299209075 0.8342404973 0.8736779466 0.9724466982
So there is one (slightly) negative eigenvalue.
there are a number of things one can try such as restarting the model
from the
final estimates with
./glmmadmb -maxph 5 -phase 5 -binp glmmadmb.bar
but this does not solve the problem. It turns out that running the model
from the beginning with a stricter convergence criterion does produce
a positive definite Hessian.
./glmmadmb -maxph 5 -crit 1.e-8
gives a glmmadmb.eva file with
unsorted: 0.7502190194 0.7626161871 0.7216672407 0.8250394871
0.8315459284 0.8631699305 0.6817678360 0.6341003013 0.9476416352
0.2247847266 9.978823284e-06 0.001435942771 0.004023239570
sorted: 9.978823284e-06 0.001435942771 0.004023239570
0.2247847266 0.6341003013 0.6817678360 0.7216672407 0.7502190194
0.7626161871 0.8250394871 0.8315459284 0.8631699305 0.9476416352
adding the option -eigvec includes the eigenvectors of the Hessian.
./glmmadmb -maxph 5 -crit 1.e-8 -eigvec
then the eva file looks like
unsorted: 0.7502190194 0.7626161871 0.7216672407 0.8250394871
0.8315459284 0.8631699305 0.6817678360 0.6341003013 0.9476416352
0.2247847266 9.978823284e-06 0.001435942771 0.004023239570
0.7502190194 0.7626161871 0.7216672407 0.8250394871
0.8315459284 0.8631699305 0.6817678360 0.6341003013 0.9476416352
0.2247847266 9.978823284e-06 0.001435942771 0.004023239570
3.145751248e-05 -0.02229426701 -0.6439166902 0.4165291489
-0.2349975122 0.3378538346 -0.3627220631 -0.1375767378 0.2092747212
-0.2021974178 -0.08252179794 0.004892490007 0.0007365404429
-0.0001627581714 -0.02292054239 -0.2533111690 0.3418924618
0.03267828005 -0.7301316450 0.1209804739 0.4006587038
-0.05379681904 -0.1784520056 -0.2726715930 0.0006368161115 0.002106698598
6.905271438e-05 -0.01094136597 -0.1616308706 -0.1170460172
0.7988984662 0.06758963263 0.02241602484 -0.1049373653 0.02046180512
-0.5386081221 0.1233033278 0.003460024640 0.001204016299
0.0003480524365 0.003719457042 0.1111906466 0.1428914105
-0.08189325289 -0.4118421907 0.1726200229 -0.7685910283 0.4039533028
-0.04965863296 0.06856538114 0.002760235874 -0.001145571029
0.0003922122329 -0.001039509669 0.2633796300 0.01139584203
-0.4343527695 0.06770277471 0.1747624011 0.2663334861 0.1867854796
-0.6627218740 0.4021039370 0.0007643489613 -0.001181539429
-0.0001962079647 -0.006193603101 -0.03602279601 -0.3456553725
-0.2750993786 -0.1978416834 -0.3326903098 -0.3278134635
-0.6216010012 -0.3601442675 -0.1735738092 0.0005875992569 0.0009502102918
-1.801921268e-05 0.02586284264 0.5897627612 0.2877836172
0.1046648012 0.1632217687 -0.2925115862 0.01356523316 0.1518946287
-0.2138105138 -0.6136230469 0.005151299186 -0.001335903862
5.543672656e-05 0.05185388996 -0.006611299676 0.4170181174
-0.02602451139 0.3035901652 0.6582827082 -0.1964552396
-0.4819848060 -0.07565901091 -0.1433677854 -0.0003094013723
-0.0004959787966
-0.0009915469361 0.03224097595 0.2492459149 0.5458924492
0.1508893953 -0.1243502158 -0.4036042697 -0.03639258080
-0.3348481523 0.1191998766 0.5568003123 0.004954228709 0.001733212413
0.008029938584 -0.9971258920 0.04538382883 0.03359505616
0.003830672944 0.02411983117 0.02119394632 -0.01714560983
-0.03042769214 0.01163740729 0.002302755985 -0.003233574812 0.008398091508
0.9928784299 0.006992077633 -0.0004539774337 0.0003402247550
0.0003997625959 -0.0005470094690 -0.0009410663612 0.0003558416009
-0.0006377696486 0.0002107506719 0.0003414248073 -0.006399120457
-0.1187443667
-0.1177436265 -0.009601421062 -0.001660259044 0.0004870104068
0.001146729502 -0.001348434808 -0.0006452870809 0.0009410093944
-0.002049145507 0.0002844653223 0.0006418773714 0.08304885626 -0.9895125153
0.01621880363 -0.002512232778 -0.0006114832900 -0.006059549890
-0.002298758632 -0.0001654826189 0.005049402423 0.002819847138
-0.001161996960 0.004339845308 7.078884217e-05 0.9964714971 0.08172608698
where I have deleted some lines so that only the unsorted eigenvalues and
the eigenvectors (in the same order) are included. The small
eigenvalue is third from the last so that corresponding eigenvector is
0.9928784299 0.006992077633 -0.0004539774337 0.0003402247550
0.0003997625959 -0.0005470094690 -0.0009410663612 0.0003558416009
-0.0006377696486 0.0002107506719 0.0003414248073 -0.006399120457
-0.1187443667
Note that is is almost entirely the first component. check the par file,
glmmadmb.par
# Number of parameters = 13 Objective function value = 1183.16 Maximum
gradient component = 1.55143e-07
# pz:
0.0267768011007
# beta:
3.80217042534 2.99365228295 2.14620977832 0.693168837684 1.48188509460
1.41704108724 -1.20474431384 -2.72872529388 1.22958281355 0.907826960877
# tmpL:
-1.27434816223
# tmpL1:
0.000100000000000
# log_alpha:
0.365496270825
# u:
0.883421752157 0.725093568164 0.515818718059 -0.252695513091
0.376963076134 0.139381634514 1.50020943187 0.277631810913
0.130374031442 0.289427299208 0.581103164117 0.174844539661
-0.322991242902 -0.119327510643 0.967346420700 1.31812402912
-0.502539361904 -1.03457222137 -1.14964617640 -0.0617951773726
-0.866160795582 -1.16221633966 -1.65553226247
and you will see that it corresponds to the first parameter pz which is the
zero inflation parameter. So it is saying that the model response to the
zero inflation is very small. and slightly confounded with the last
parameter,
which is the overdispersion parameter. This makes sense as it is saying
that
the model can account for extra zeroes either my adding zero inflation or
by changing the overdispersion a bit.
Now lets turn off zero inflation and fit the model.
the par file is
# Number of parameters = 12 Objective function value = 1183.21 Maximum
gradient component = 1.43850e-07
# pz:
0.0200000000000
# beta:
3.06300647659 3.03459572371 2.10955237321 0.651987307491 1.53607380969
1.51288805518 -1.24056997621 -2.65942119162 1.20265939317 0.869632910773
# tmpL:
-1.26543720173
# tmpL1:
0.000100000000000
# log_alpha:
0.393160445395
# u:
0.921344073078 0.774702834115 0.492811643199 -0.243814794142
0.387638751447 0.139004323059 1.50021679322 0.271472152608
0.130845912349 0.258548576465 0.585278999357 0.157099308388
-0.345577809207 -0.130590600526 0.977640503202 1.32244233265
-0.485656349901 -1.03509274755 -1.14782075617 -0.0389045698289
-0.878875283217 -1.16385512772 -1.64533137464
So comparing the log-likelihoods (minus Objective function values)
one sees that the difference is only 0.05, so that zero inflation is
not significant.
# Number of parameters = 13 Objective function value = 1183.16 Maximum
gradient component = 1.55143e-07
# pz:
# Number of parameters = 12 Objective function value = 1183.21 Maximum
gradient component = 1.43850e-07
More information about the R-sig-mixed-models
mailing list