[R-sig-ME] MCMCglmm predictions using new data error

Sven E. Templer sven.templer at gmail.com
Thu Jan 7 21:06:16 CET 2016


Hi Alberto,

avoid the error from predict by running 

pred_grid$y <- 0

before

predict(fit, newdata = pred_grid)

Best,
Sven

> On 06 Jan 2016, at 23:39, Alberto Gallano <alberto.gc8 at gmail.com> wrote:
> 
> I'm trying to make predictions from an MCMCglmm model using new data. This
> is a feature that was recently added to the predict.MCMCglmm function
> (version 2.22). However, when I set things up as I would for other predict
> methods, I get the following error:
> 
>> Error in eval(expr, envir, enclos) : object 'y' not found
> 
> where 'y' is my response vector. I'm including a simplified replicable
> example below. Is the set up of the prediction grid different for the
> MCMCglmm predict method compared with other methods?
> 
> best,
> Alberto
> 
> #
> ----------------------------------------------------------------------------------
> library(MCMCglmm)
> 
> set.seed(123)
> 
> dat <- data.frame(x = rnorm(100), y = rnorm(100))
> 
> 
> fit <- MCMCglmm(
> 
>    fixed = y ~ x,
> 
>    rcov = ~ units,
> 
>    data = dat,
> 
>    family = "gaussian",
> 
>    pr = TRUE, pl = TRUE,
> 
>    saveX = TRUE,  saveZ = TRUE,
> 
>    nitt = 1.3e+4, thin = 10, burnin = 3e+3
> 
> )
> 
> 
> pred_grid <- data.frame(x = seq(-1, 1, length.out = 30))
> 
> 
> predict(fit, newdata = pred_grid)
> 
> #
> ----------------------------------------------------------------------------------
> 
> 	[[alternative HTML version deleted]]
> 
> _______________________________________________
> R-sig-mixed-models at r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models



More information about the R-sig-mixed-models mailing list