[R-sig-ME] different output in R and SAS for GLMM
Adeela Munawar
adeela.uaf at gmail.com
Tue Dec 29 05:56:54 CET 2015
Dear all,
I am comparing the output of SAS and R for generalized linear mixed models
with gamma family. Code for SAS are
proc glimmix data=ch12_ex1 plot=residualpanel(ilink) noprofile;
class block a b;
model days=a|b / d=gamma;
random intercept a/subject=block;
lsmeans a*b / slicediff=(a b) ilink cl;
covtest /cl(type=plr);
while I am fitting this using lme4 package as
a<-factor(a)
b<-factor(b)
block<-factor(block)
ModelGamma <- glmer(days~a*b+(1|block/a),family=Gamma(link = "log"))
lsmeans(ModelGamma,~a*b)
but the results are altogether different. SAS gives 9 df while NA in R and
least sqaure means are also different.
a b lsmean SE df asymp.LCL asymp.UCL
1 1 3.212923 0.5677001 NA 2.100251 4.325595
2 1 3.229803 0.5662713 NA 2.119932 4.339675
3 1 3.279271 0.5688496 NA 2.164346 4.394196
1 2 2.499457 0.5679181 NA 1.386358 3.612556
2 2 3.248968 0.5659105 NA 2.139804 4.358132
3 2 3.563672 0.5689044 NA 2.448640 4.678705
Why this happens? Please suggest.
Thanks,
Adeela
[[alternative HTML version deleted]]
More information about the R-sig-mixed-models
mailing list