[R-sig-ME] random effect model
Ben Bolker
bbolker at gmail.com
Fri Dec 11 04:55:01 CET 2015
On 15-12-10 10:16 PM, li li wrote:
> Hi all,
> I have a very simple data set "data". Here both day and analysts are
> considered as random.
> I fit the mod1 and mod2 as below. The random effect in both models come out
> to be zero and same results are returned from both models. It seems very
> strange to me. Anyone have an explanation or suggestion?
> Thanks. Hanna
>
This is very common when trying to fit random factors with small (e.g.
<6) numbers of levels of the grouping variable: see e.g.
http://glmm.wikidot.com/faq (search for "Why is my random effect
variance estimated as zero, or correlations estimated as +/- 1? What
should I do about it?")
or
https://rpubs.com/bbolker/4187
>
>
>> data
> values day analyst
> stat_d1p1 -0.06357455 1 1
> stat_d1p2 -0.05564684 1 2
> stat_d1p3 0.16145903 1 3
> stat_d2p1 0.07763253 2 1
> stat_d2p2 -0.02988389 2 2
> stat_d2p3 -0.16899311 2 3
> stat_d3p1 -0.13545138 3 1
> stat_d3p2 -0.07537850 3 2
> stat_d3p3 -0.01313345 3 3
>> library(lme4)
>> library(lmerTest)
>
>> mod1 <- lmer(values ~ 1+(1|day),data=data)
>> summary(mod1)
> Linear mixed model fit by REML t-tests use Satterthwaite approximations to
> degrees of freedom [lmerMod]
> Formula: values ~ 1 + (1 | day)
> Data: data
> REML criterion at convergence: -11.7
> Scaled residuals:
> Min 1Q Median 3Q Max
> -1.3311 -0.4103 -0.2162 0.2019 1.9192
> Random effects:
> Groups Name Variance Std.Dev.
> day (Intercept) 0.00000 0.0000
> Residual 0.01034 0.1017
> Number of obs: 9, groups: day, 3
> Fixed effects:
> Estimate Std. Error df t value Pr(>|t|)
> (Intercept) -0.03366 0.03389 8.00000 -0.993 0.35
>>
>
>> mod2 <- lmer(values ~ 1+(1|analyst),data=data)
>> summary(mod2)
> Linear mixed model fit by REML t-tests use Satterthwaite approximations to
> degrees of freedom [lmerMod]
> Formula: values ~ 1 + (1 | analyst)
> Data: data
> REML criterion at convergence: -11.7
> Scaled residuals:
> Min 1Q Median 3Q Max
> -1.3311 -0.4103 -0.2162 0.2019 1.9192
> Random effects:
> Groups Name Variance Std.Dev.
> analyst (Intercept) 0.00000 0.0000
> Residual 0.01034 0.1017
> Number of obs: 9, groups: analyst, 3
> Fixed effects:
> Estimate Std. Error df t value Pr(>|t|)
> (Intercept) -0.03366 0.03389 8.00000 -0.993 0.35
>>
>
> [[alternative HTML version deleted]]
>
> _______________________________________________
> R-sig-mixed-models at r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models
>
More information about the R-sig-mixed-models
mailing list