[R-sig-ME] A question about CLMM in R
Ben Bolker
bbolker at gmail.com
Thu Dec 3 20:05:58 CET 2015
In general you want to use drop1() or anova() to get this. If there
is an anova() method available,
then fit the model without the interaction:
reduced_model <- clmm2(location = preference ~ treatment + siteuse
,random+sample,Hess=TRUE
and do anova(full_model,reduced_model)
On Thu, Dec 3, 2015 at 1:12 PM, Dan McCloy <drmccloy at uw.edu> wrote:
> The column labeled Pr(>|z|) is the p-value provided by ordinal::clmm
> (it is also labeled this way in lme4::glmer among others).
>
> On Thu, Dec 3, 2015 at 9:01 AM, Georgina Southon
> <g.southon at sheffield.ac.uk> wrote:
>> Dear CLMM experts,
>>
>> I have been using the ordinal package in R to model ordinal response data with CLMM, with the inclusion of categorical predictor variables and interaction terms. The model returns perfectly coherent results thankfully (a truncated example attached), however it does not provide an overall P value for each interaction term. Is this possible to obtain when modelling with clmm?
>>
>> Call:
>> clmm2(location = preference ~ treatment + siteuse +treatment*siteuse,random+sample,Hess=TRUE
>>
>>
>> random = sample,
>> data = plops, Hess = TRUE)
>> Random effects:
>> Var Std.Dev
>> sample 1.660947 1.288777
>> Location coefficients:
>> Estimate Std. Error z value Pr(>|z|)
>> treatmentB 0.0736 1.4480 0.0508 0.95947987
>> treatmentC 0.8667 1.0871 0.7972 0.42531178
>> treatmentD 0.1548 1.1883 0.1303 0.89636709
>> treatmentE -0.9512 1.3482 -0.7056 0.48046420
>> treatmentF 4.0151 1.2521 3.2066 0.00134313
>> treatmentG -0.0489 1.0773 -0.0454 0.96376758
>> treatmentH 1.1422 1.2055 0.9474 0.34342605
>> treatmentI 0.2228 1.0840 0.2055 0.83716432
>> siteuse -0.0004 0.0013 -0.3159 0.75211206
>>
>>
>>
>>
>> treatmentB:siteuse 0.0012 0.0019 0.6217 0.53413206
>> treatmentC:siteuse 0.0011 0.0015 0.7460 0.45565644
>> treatmentD:siteuse 0.0009 0.0016 0.5841 0.55913734
>> treatmentE:siteuse 0.0004 0.0016 0.2355 0.81378524
>> treatmentF:siteuse 0.0002 0.0016 0.1011 0.91943399
>> treatmentG:siteuse -0.0006 0.0015 -0.4202 0.67432023
>> treatmentH:siteuse 0.0000 0.0018 -0.0278 0.97782476
>> treatmentI:siteuse -0.0019 0.0016 -1.1369 0.25559690
>>
>>
>>
>> Any insights would be most gratefully received.
>>
>> Thank you,
>>
>>
>> Dr Georgina Southon
>> Post-doctoral Researcher
>> Department of Landscape
>> The University of Sheffield
>>
>>
>>
>>
>>
>>
>>
>> [[alternative HTML version deleted]]
>>
>> _______________________________________________
>> R-sig-mixed-models at r-project.org mailing list
>> https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models
>
> _______________________________________________
> R-sig-mixed-models at r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models
More information about the R-sig-mixed-models
mailing list