[R-sig-ME] glmer: var-cov estimated from RX
Ben Bolker
bbolker at gmail.com
Mon Nov 30 02:18:08 CET 2015
On 15-11-28 05:06 PM, Hans Ekbrand wrote:
> Dear list,
>
> I ran glmer() on a large dataset (16 million rows), and after some
> 6000 minutes, it converged.
>
> However, there were two (related) warnings:
>
> 1: In vcov.merMod(object, use.hessian = use.hessian) :
> variance-covariance matrix computed from finite-difference Hessian is
> not positive definite: falling back to var-cov estimated from RX
> 2: In vcov.merMod(object, correlation = correlation, sigm = sig) :
> variance-covariance matrix computed from finite-difference Hessian is
> not positive definite: falling back to var-cov estimated from RX
>
> I seek advice on where to go from here, and knowledge about the
> concepts "MX" and "finite-difference Hessian" which I am unfamiliar
> with.
>
> Can I rely on the variance-covariance matrix I've got?
Probably. These variance-covariance matrices are all approximations
in any case, but should be pretty good in the large-data case.
>
> Should I try get rid of warning? If so, what could possibly help (is
> it meaningful to try with a different optimizer?)? Since the
> convergence time was about 5 days, trying out difference optimizers is
> not very fun.
I suspect you probably won't be able to get rid of the warning, but it
may be worth trying out control=glmerControl(optimizer="bobyqa") --
might speed up your convergence considerably.
It may also be worth trying the (experimental!!!) glmmTMB package,
which you can find on github ...
cheers
Ben Bolker
>
> If it helps, here is the output of summary:
>
> Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) ['glmerMod']
> Family: binomial ( logit )
> Formula: deprived.of.education ~ (1 | country) + (1 | lowest.regional.level) +
> per.cent.muslim.in.country * sex + per.cent.hindu.in.country *
> sex + per.cent.muslim.in.subregional.level * sex + per.cent.hindu.in.subregional.level *
> sex + gdp.log + qog + wealth * sex * religion + mean.wealth.at.lowest.regional.level
> Data: my.df
>
> AIC BIC logLik deviance df.resid
> 4047602 4048056 -2023770 4047540 16959894
>
> Scaled residuals:
> Min 1Q Median 3Q Max
> -40.490 0.000 0.079 0.149 4.654
>
> Random effects:
> Groups Name Variance Std.Dev.
> lowest.regional.level (Intercept) 0.6495 0.8059
> country (Intercept) 39.2973 6.2688
> Number of obs: 16959925, groups: lowest.regional.level, 3962; country, 31
>
> Fixed effects:
> Estimate Std. Error z value Pr(>|z|)
> (Intercept) -2.076e+01 1.150e+01 -1.81 0.0709 .
> per.cent.muslim.in.country 9.057e-01 7.431e-01 1.22 0.2229
> sexMale 4.297e-02 5.193e-03 8.27 < 2e-16 ***
> per.cent.hindu.in.country -4.599e-02 3.366e-02 -1.37 0.1718
> per.cent.muslim.in.subregional.level -1.306e-02 9.290e-03 -1.41 0.1597
> per.cent.hindu.in.subregional.level -1.234e-02 1.059e-03 -11.64 < 2e-16 ***
> gdp.log 3.941e+00 1.548e+00 2.55 0.0109 *
> qog -5.200e+00 3.048e+00 -1.71 0.0880 .
> wealthMiddle 1.166e+00 1.176e-02 99.10 < 2e-16 ***
> wealthRichest 1.584e+00 1.752e-02 90.38 < 2e-16 ***
> religionHinduism -9.585e-01 1.233e-01 -7.77 7.57e-15 ***
> religionIslam -3.983e-01 6.893e-03 -57.78 < 2e-16 ***
> mean.wealth.at.lowest.regional.level 1.258e+00 1.410e-01 8.93 < 2e-16 ***
> per.cent.muslim. in.country:sexMale -2.692e-01 5.185e-03 -51.93 < 2e-16 ***
> sexMale:per.cent.hindu.in.country 3.684e-03 1.363e-04 27.03 < 2e-16 ***
> sexMale:per.cent.muslim.in.subregional.level -1.504e-03 1.399e-03 -1.07 0.2826
> sexMale:per.cent.hindu.in.subregional.level -1.350e-04 1.484e-04 -0.91 0.3632
> sexMale:wealthMiddle -6.542e-02 1.414e-02 -4.63 3.72e-06 ***
> sexMale:wealthRichest 1.553e-01 2.527e-02 6.15 7.99e-10 ***
> wealthMiddle:religionHinduism -2.468e-02 1.409e-01 -0.18 0.8609
> wealthRichest:religionHinduism 7.348e-01 1.472e-01 4.99 5.97e-07 ***
> wealthMiddle:religionIslam -2.575e-01 1.434e-02 -17.96 < 2e-16 ***
> wealthRichest:religionIslam 1.183e-01 1.775e-02 6.66 2.70e-11 ***
> sexMale:religionHinduism 3.811e-01 1.816e-01 2.10 0.0358 *
> sexMale:religionIslam 4.565e-02 9.674e-03 4.72 2.38e-06 ***
> sexMale:wealthMiddle:religionHinduism -1.038e-01 2.020e-01 -0.51 0.6074
> sexMale:wealthRichest:religionHinduism -4.167e-01 2.117e-01 -1.97 0.0491 *
> sexMale:wealthMiddle:religionIslam 1.257e-01 1.789e-02 7.03 2.07e-12 ***
> sexMale:wealthRichest:religionIslam -1.642e-01 2.610e-02 -6.29 3.10e-10 ***
> ---
> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
>
>
> I can provide the data, it would help to understand the matter.
>
More information about the R-sig-mixed-models
mailing list