[R-sig-ME] Random vs. fixed effects

Highland Statistics Ltd highstat at highstat.com
Mon Oct 26 11:23:51 CET 2015


> ------------------------------
>
> Message: 3
> Date: Mon, 26 Oct 2015 13:10:46 +0300
> From: Shadiya Al Hashmi <saah500 at york.ac.uk>
> To: Thierry Onkelinx <thierry.onkelinx at inbo.be>
> Cc: "r-sig-mixed-models at r-project.org"
> 	<r-sig-mixed-models at r-project.org>
> Subject: Re: [R-sig-ME] Random vs. fixed effects
> Message-ID:
> 	<CACrevpmwqyoh1QHS3+WpwsimiBmP6NovYwn_-bUgunVOi6-Ukg at mail.gmail.com>
> Content-Type: text/plain; charset="UTF-8"
>
> Dear Thierry,
>
> Thanks for your response. I meant that the way the levels of stimulus are
> shown in the output does not look right.

What exactly 'doesn't look right'? How did you expect it to look? Do you 
mean the order of the levels?

>   In addition, when I use stimulus
> as a fixed effect, R takes such a long time to produce the output compared
> to when I use it as a random effect.


Maybe you want to share the information how many observations per level 
of your stimulus you have?
Without the data and R code it is not easy to give a sensible answer.

As to the warning message....see:

http://glmm.wikidot.com/faq


Alain Zuur




>
> Besides, I'm warned as follows.
>
> In checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv,  :
>    Model failed to converge with max|grad| = 0.063422 (tol = 0.001,
> component 4)
>
> Here is how the output looks when stimulus is used as a fixed effect.
>
>> summary(m0.1)
> Generalized linear mixed model fit by maximum likelihood (Laplace
> Approximation) [
> glmerMod]
>   Family: binomial  ( logit )
> Formula: match ~ Listgp + stimulus + (1 | Listener)
>     Data: PATdata
>
>       AIC      BIC   logLik deviance df.resid
>    5154.3   5259.5  -2562.2   5124.3     8193
>
> Scaled residuals:
>       Min       1Q   Median       3Q      Max
> -25.0764  -0.2706  -0.1939   0.2472  10.5131
>
> Random effects:
>   Groups   Name        Variance Std.Dev.
>   Listener (Intercept) 1.743    1.32
> Number of obs: 8208, groups:  Listener, 228
>
> Fixed effects:
>                Estimate Std. Error z value Pr(>|z|)
> (Intercept)     2.7561     0.2657  10.371  < 2e-16 ***
> ListgpTA        0.1741     0.3147   0.553 0.580128
> ListgpTQ        0.0810     0.2575   0.315 0.753094
> stimulushaaDD  -5.4415     0.2071 -26.272  < 2e-16 ***
> stimulushad    -4.2953     0.1822 -23.569  < 2e-16 ***
> stimulushaDD   -5.4946     0.2086 -26.337  < 2e-16 ***
> stimulushid    -5.1519     0.1994 -25.832  < 2e-16 ***
> stimulushiDD   -0.6708     0.1801  -3.724 0.000196 ***
> stimulushiid   -5.8124     0.2186 -26.593  < 2e-16 ***
> stimulushiiDD  -5.5101     0.2091 -26.353  < 2e-16 ***
> stimulushud    -0.2016     0.1915  -1.053 0.292345
> stimulushuDD   -5.6188     0.2123 -26.462  < 2e-16 ***
> stimulushuud   -5.6107     0.2121 -26.450  < 2e-16 ***
> stimulushuuDD  -5.3207     0.2038 -26.109  < 2e-16 ***
> ---
> Signif. codes:  0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1
>
> Correlation of Fixed Effects:
>                (Intr) LstgTA LstgTQ stimulushaaDD stimulushad stimulushaDD
> ListgpTA      -0.613
> ListgpTQ      -0.755  0.636
> stimulushaaDD -0.394 -0.007  0.004
> stimulushad   -0.440 -0.006  0.005  0.605
> stimulushaDD  -0.392 -0.007  0.003  0.555         0.601
> stimulushid   -0.407 -0.007  0.004  0.572         0.624       0.569
> stimulushiDD  -0.414  0.000  0.001  0.534         0.606       0.530
> stimulushiid  -0.376 -0.006  0.003  0.536         0.578       0.533
> stimulushiiDD -0.391 -0.007  0.003  0.554         0.600       0.551
> stimulushud   -0.386  0.000  0.000  0.497         0.564       0.493
> stimulushuDD  -0.385 -0.007  0.003  0.548         0.592       0.545
> stimulushuud  -0.386 -0.007  0.003  0.548         0.593       0.545
> stimulushuuDD -0.400 -0.007  0.004  0.564         0.613       0.561
>                stimulushid stimulushiDD stimulushiid stimulushiiDD
> stimulushud
> ListgpTA
>
> ListgpTQ
>
> stimulushaaDD
>
> stimulushad
>
> stimulushaDD
>
> stimulushid
>
> stimulushiDD   0.554
>
> stimulushiid   0.549       0.506
>
> stimulushiiDD  0.568       0.529        0.533
>
> stimulushud    0.516       0.569        0.471        0.492
>
> stimulushuDD   0.562       0.521        0.527        0.544         0.484
>
> stimulushuud   0.562       0.522        0.528        0.545         0.485
>
> stimulushuuDD  0.579       0.543        0.542        0.560         0.505
>
>                stimulushuDD stimulushuud
> ListgpTA
> ListgpTQ
> stimulushaaDD
> stimulushad
> stimulushaDD
> stimulushid
> stimulushiDD
> stimulushiid
> stimulushiiDD
> stimulushud
> stimulushuDD
> stimulushuud   0.539
> stimulushuuDD  0.554        0.554
>
>
> Compared to when it is used as a random effect.
>
> m0.1 <- glmer(match ~ Listgp + (1|stimulus) + (1|Listener), data = PATdata,
> family = "binomial")
>> summary(m0.1)
> Generalized linear mixed model fit by maximum likelihood (Laplace
> Approximation) [
> glmerMod]
>   Family: binomial  ( logit )
> Formula: match ~ Listgp + (1 | stimulus) + (1 | Listener)
>     Data: PATdata
>
>       AIC      BIC   logLik deviance df.resid
>    5218.3   5253.4  -2604.2   5208.3     8203
>
> Scaled residuals:
>       Min       1Q   Median       3Q      Max
> -21.9276  -0.2804  -0.2059   0.2740   9.4275
>
> Random effects:
>   Groups   Name        Variance Std.Dev.
>   Listener (Intercept) 1.676    1.294
>   stimulus (Intercept) 4.949    2.225
> Number of obs: 8208, groups:  Listener, 228; stimulus, 12
>
> Fixed effects:
>              Estimate Std. Error z value Pr(>|z|)
> (Intercept)  -1.3754     0.6792  -2.025   0.0429 *
> ListgpTA      0.2284     0.3073   0.743   0.4572
> ListgpTQ      0.1432     0.2513   0.570   0.5687
> ---
> Signif. codes:  0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1
>
> Correlation of Fixed Effects:
>           (Intr) LstgTA
> ListgpTA -0.235
> ListgpTQ -0.288  0.636
>
>
> Thanks,
>
> Shad
>
>
> On 26 October 2015 at 12:47, Thierry Onkelinx <thierry.onkelinx at inbo.be>
> wrote:
>
>> Dear Shad,
>>
>> Please don't post in HTML since it makes the model output unreadable.
>>
>> You need to be more clear on "R seems not to like it".
>>
>> Best regards,
>>
>> ir. Thierry Onkelinx
>> Instituut voor natuur- en bosonderzoek / Research Institute for Nature and
>> Forest
>> team Biometrie & Kwaliteitszorg / team Biometrics & Quality Assurance
>> Kliniekstraat 25
>> 1070 Anderlecht
>> Belgium
>>
>> To call in the statistician after the experiment is done may be no more
>> than asking him to perform a post-mortem examination: he may be able to say
>> what the experiment died of. ~ Sir Ronald Aylmer Fisher
>> The plural of anecdote is not data. ~ Roger Brinner
>> The combination of some data and an aching desire for an answer does not
>> ensure that a reasonable answer can be extracted from a given body of data.
>> ~ John Tukey
>>
>> 2015-10-26 10:37 GMT+01:00 Shadiya Al Hashmi <saah500 at york.ac.uk>:
>>
>>> I'm using a binomial glmer mixed effects model.
>>>
>>> One variable that I have, 'stimulus' has 12 levels. The levels were not
>>> randomly selected but were rather chosen as per the study design, so I
>>> have
>>> used the variable ?stimulus? as a fixed variable in the basic model but R
>>> seems not to like it (at least this is my interpretation) given the way
>>> the
>>> output looks and the amount of time R takes to process it.
>>>
>>> m0.1 <- glmer(match ~ Listgp + stimulus + (1|Listener), data = PATdata,
>>> family = "binomial")
>>>
>>>
>>>
>>> summary(m0.1) Generalized linear mixed model fit by maximum likelihood
>>> (Laplace Approximation) [ glmerMod] Family: binomial ( logit ) Formula:
>>> match ~ Listgp + stimulus + (1 | Listener) Data: PATdata
>>>
>>>   AIC      BIC   logLik deviance df.resid
>>>
>>> 5154.3 5259.5 -2562.2 5124.3 8193
>>>
>>>
>>>
>>> Scaled residuals: Min 1Q Median 3Q Max -25.0764 -0.2706 -0.1939 0.2472
>>> 10.5131
>>>
>>>
>>>
>>> Random effects: Groups Name Variance Std.Dev. Listener (Intercept) 1.743
>>> 1.32
>>>
>>> Number of obs: 8208, groups: Listener, 228
>>>
>>>
>>>
>>> Fixed effects: Estimate Std. Error z value Pr(>|z|)
>>>
>>> (Intercept) 2.7561 0.2657 10.371 < 2e-16 * ListgpTA 0.1741 0.3147 0.553
>>> 0.580128
>>>
>>> ListgpTQ 0.0810 0.2575 0.315 0.753094
>>>
>>> stimulushaaDD -5.4415 0.2071 -26.272 < 2e-16 stimulushad -4.2953 0.1822
>>> -23.569 < 2e-16 stimulushaDD -5.4946 0.2086 -26.337 < 2e-16 stimulushid
>>> -5.1519 0.1994 -25.832 < 2e-16 stimulushiDD -0.6708 0.1801 -3.724 0.000196
>>> stimulushiid -5.8124 0.2186 -26.593 < 2e-16 stimulushiiDD -5.5101 0.2091
>>> -26.353 < 2e-16 stimulushud -0.2016 0.1915 -1.053 0.292345
>>>
>>> stimulushuDD -5.6188 0.2123 -26.462 < 2e-16 stimulushuud -5.6107 0.2121
>>> -26.450 < 2e-16 *
>>>
>>>
>>>
>>> stimulushuuDD -5.3207 0.2038 -26.109 < 2e-16 ***
>>>
>>>
>>>
>>> Signif. codes: 0 ?? 0.001 ?? 0.01 ?? 0.05 ?.? 0.1 ? ? 1
>>>
>>>
>>>
>>> Correlation of Fixed Effects: (Intr) LstgTA LstgTQ stimulushaaDD
>>> stimulushad stimulushaDD ListgpTA -0.613
>>>
>>> ListgpTQ -0.755 0.636
>>>
>>> stimulushaaDD -0.394 -0.007 0.004
>>>
>>> stimulushad -0.440 -0.006 0.005 0.605
>>>
>>> stimulushaDD -0.392 -0.007 0.003 0.555 0.601
>>>
>>> stimulushid -0.407 -0.007 0.004 0.572 0.624 0.569
>>>
>>> stimulushiDD -0.414 0.000 0.001 0.534 0.606 0.530
>>>
>>> stimulushiid -0.376 -0.006 0.003 0.536 0.578 0.533
>>>
>>> stimulushiiDD -0.391 -0.007 0.003 0.554 0.600 0.551
>>>
>>> stimulushud -0.386 0.000 0.000 0.497 0.564 0.493
>>>
>>> stimulushuDD -0.385 -0.007 0.003 0.548 0.592 0.545
>>>
>>> stimulushuud -0.386 -0.007 0.003 0.548 0.593 0.545
>>>
>>> stimulushuuDD -0.400 -0.007 0.004 0.564 0.613 0.561
>>>
>>> stimulushid stimulushiDD stimulushiid stimulushiiDD stimulushud ListgpTA
>>>
>>> ListgpTQ
>>>
>>> stimulushaaDD
>>>
>>> stimulushad
>>>
>>> stimulushaDD
>>>
>>> stimulushid
>>>
>>> stimulushiDD 0.554
>>>
>>> stimulushiid 0.549 0.506
>>>
>>> stimulushiiDD 0.568 0.529 0.533
>>>
>>> stimulushud 0.516 0.569 0.471 0.492
>>>
>>> stimulushuDD 0.562 0.521 0.527 0.544 0.484
>>>
>>> stimulushuud 0.562 0.522 0.528 0.545 0.485
>>>
>>> stimulushuuDD 0.579 0.543 0.542 0.560 0.505
>>>
>>> stimulushuDD stimulushuud ListgpTA
>>>
>>> ListgpTQ
>>>
>>> stimulushaaDD
>>>
>>> stimulushad
>>>
>>> stimulushaDD
>>>
>>> stimulushid
>>>
>>> stimulushiDD
>>>
>>> stimulushiid
>>>
>>> stimulushiiDD
>>>
>>> stimulushud
>>>
>>> stimulushuDD
>>>
>>> stimulushuud 0.539
>>>
>>> stimulushuuDD 0.554 0.554
>>>
>>> So, my question is, can I consider 'stimulus' as a random effect instead
>>> since the model become more sensible from a programming point of view?
>>>
>>> m0.1 <- glmer(match ~ Listgp + (1|stimulus) + (1|Listener), data =
>>> PATdata,
>>> family = "binomial") summary(m0.1) Generalized linear mixed model fit by
>>> maximum likelihood (Laplace Approximation) [ glmerMod] Family: binomial (
>>> logit ) Formula: match ~ Listgp + (1 | stimulus) + (1 | Listener) Data:
>>> PATdata
>>>
>>>   AIC      BIC   logLik deviance df.resid
>>>
>>> 5218.3 5253.4 -2604.2 5208.3 8203
>>>
>>>
>>>
>>> Scaled residuals: Min 1Q Median 3Q Max -21.9276 -0.2804 -0.2059 0.2740
>>> 9.4275
>>>
>>>
>>>
>>> Random effects: Groups Name Variance Std.Dev. Listener (Intercept) 1.676
>>> 1.294
>>>
>>> stimulus (Intercept) 4.949 2.225
>>>
>>> Number of obs: 8208, groups: Listener, 228; stimulus, 12
>>>
>>>
>>>
>>> Fixed effects: Estimate Std. Error z value Pr(>|z|)
>>>
>>> (Intercept) -1.3754 0.6792 -2.025 0.0429 * ListgpTA 0.2284 0.3073 0.743
>>> 0.4572
>>>
>>>
>>>
>>> ListgpTQ 0.1432 0.2513 0.570 0.5687
>>>
>>>
>>>
>>> Signif. codes: 0 ?? 0.001 ?? 0.01 ?? 0.05 ?.? 0.1 ? ? 1
>>>
>>>
>>>
>>> Correlation of Fixed Effects: (Intr) LstgTA ListgpTA -0.235
>>>
>>> ListgpTQ -0.288 0.636
>>>
>>>
>>>
>>> Thank you,
>>>
>>> Shad
>>>
>>>          [[alternative HTML version deleted]]
>>>
>>> _______________________________________________
>>> R-sig-mixed-models at r-project.org mailing list
>>> https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models
>>
>>
> 	[[alternative HTML version deleted]]
>
>
>
> ------------------------------
>
> Subject: Digest Footer
>
> _______________________________________________
> R-sig-mixed-models mailing list
> R-sig-mixed-models at r-project.org
> https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models
>
> ------------------------------
>
> End of R-sig-mixed-models Digest, Vol 106, Issue 33
> ***************************************************
>

-- 
Dr. Alain F. Zuur

First author of:
1. Beginner's Guide to GAMM with R (2014).
2. Beginner's Guide to GLM and GLMM with R (2013).
3. Beginner's Guide to GAM with R (2012).
4. Zero Inflated Models and GLMM with R (2012).
5. A Beginner's Guide to R (2009).
6. Mixed effects models and extensions in ecology with R (2009).
7. Analysing Ecological Data (2007).

Highland Statistics Ltd.
9 St Clair Wynd
UK - AB41 6DZ Newburgh
Tel:   0044 1358 788177
Email: highstat at highstat.com
URL:   www.highstat.com



More information about the R-sig-mixed-models mailing list