[R-sig-ME] contrasts among simple effects
Lenth, Russell V
russell-lenth at uiowa.edu
Wed Oct 21 17:37:00 CEST 2015
I did not experience either of the problems you report running a very similar example -- see below. I wonder if you have some kind of masking problem, or need to start afresh or update your packages or your version of R.
Russ
[PS - if you reply, please include me directly]
--
Russell V. Lenth - Professor Emeritus
Department of Statistics and Actuarial Science
The University of Iowa - Iowa City, IA 52242 USA
Voice (319)335-0712 (Dept. office) - FAX (319)335-3017
> library(nlme)
> Oats.lme <- lme(yield ~ Variety * ordered(nitro), ~ 1|Block/Variety, data = Oats)
> library(lsmeans)
> lsm <- lsmeans(Oats.lme, ~ Variety | nitro)
> lsm
nitro = 0.0:
Variety lsmean SE df lower.CL upper.CL
Golden Rain 80.00000 9.106959 5 56.58982 103.41018
Marvellous 86.66667 9.106959 5 63.25648 110.07685
Victory 71.50000 9.106959 5 48.08982 94.91018
nitro = 0.2:
Variety lsmean SE df lower.CL upper.CL
Golden Rain 98.50000 9.106959 5 75.08982 121.91018
Marvellous 108.50000 9.106959 5 85.08982 131.91018
Victory 89.66667 9.106959 5 66.25648 113.07685
nitro = 0.4:
Variety lsmean SE df lower.CL upper.CL
Golden Rain 114.66667 9.106959 5 91.25648 138.07685
Marvellous 117.16667 9.106959 5 93.75648 140.57685
Victory 110.83333 9.106959 5 87.42315 134.24352
nitro = 0.6:
Variety lsmean SE df lower.CL upper.CL
Golden Rain 124.83333 9.106959 5 101.42315 148.24352
Marvellous 126.83333 9.106959 5 103.42315 150.24352
Victory 118.50000 9.106959 5 95.08982 141.91018
Confidence level used: 0.95
> pairs(lsm)
nitro = 0.0:
contrast estimate SE df t.ratio p.value
Golden Rain - Marvellous -6.666667 9.715029 10 -0.686 0.7766
Golden Rain - Victory 8.500000 9.715029 10 0.875 0.6673
Marvellous - Victory 15.166667 9.715029 10 1.561 0.3057
nitro = 0.2:
contrast estimate SE df t.ratio p.value
Golden Rain - Marvellous -10.000000 9.715029 10 -1.029 0.5762
Golden Rain - Victory 8.833333 9.715029 10 0.909 0.6470
Marvellous - Victory 18.833333 9.715029 10 1.939 0.1783
nitro = 0.4:
contrast estimate SE df t.ratio p.value
Golden Rain - Marvellous -2.500000 9.715029 10 -0.257 0.9643
Golden Rain - Victory 3.833333 9.715029 10 0.395 0.9184
Marvellous - Victory 6.333333 9.715029 10 0.652 0.7955
nitro = 0.6:
contrast estimate SE df t.ratio p.value
Golden Rain - Marvellous -2.000000 9.715029 10 -0.206 0.9770
Golden Rain - Victory 6.333333 9.715029 10 0.652 0.7955
Marvellous - Victory 8.333333 9.715029 10 0.858 0.6775
P value adjustment: tukey method for comparing a family of 3 estimates
> pairs(lsm, by = "Variety")
Variety = Golden Rain:
contrast estimate SE df t.ratio p.value
0 - 0.2 -18.500000 7.682957 45 -2.408 0.0900
0 - 0.4 -34.666667 7.682957 45 -4.512 0.0003
0 - 0.6 -44.833333 7.682957 45 -5.835 <.0001
0.2 - 0.4 -16.166667 7.682957 45 -2.104 0.1673
0.2 - 0.6 -26.333333 7.682957 45 -3.427 0.0069
0.4 - 0.6 -10.166667 7.682957 45 -1.323 0.5533
Variety = Marvellous:
contrast estimate SE df t.ratio p.value
0 - 0.2 -21.833333 7.682957 45 -2.842 0.0328
0 - 0.4 -30.500000 7.682957 45 -3.970 0.0014
0 - 0.6 -40.166667 7.682957 45 -5.228 <.0001
0.2 - 0.4 -8.666667 7.682957 45 -1.128 0.6744
0.2 - 0.6 -18.333333 7.682957 45 -2.386 0.0944
0.4 - 0.6 -9.666667 7.682957 45 -1.258 0.5938
Variety = Victory:
contrast estimate SE df t.ratio p.value
0 - 0.2 -18.166667 7.682957 45 -2.365 0.0988
0 - 0.4 -39.333333 7.682957 45 -5.120 <.0001
0 - 0.6 -47.000000 7.682957 45 -6.117 <.0001
0.2 - 0.4 -21.166667 7.682957 45 -2.755 0.0406
0.2 - 0.6 -28.833333 7.682957 45 -3.753 0.0027
0.4 - 0.6 -7.666667 7.682957 45 -0.998 0.7514
P value adjustment: tukey method for comparing a family of 4 estimates
> Date: Mon, 19 Oct 2015 14:24:05 -0500
> From: James Henson <jfhenson1 at gmail.com>
> To: Thierry Onkelinx <thierry.onkelinx at inbo.be>
> Cc: "r-sig-mixed-models at r-project.org" <r-sig-mixed-models at r-project.org>
> Subject: Re: [R-sig-ME] contrasts among simple effects
>
> Dear Russell,
>
> Your assistance is appreciated. However, the code below returns an error message. Maybe my model is inappropriate. It was necessary to remove the ordered statement [ordered(time)], because apparently with the ordered statement lsmeans did not read time as a factor.
>
> library("nlme")
>
> # with AR1 variance/covariance structure
> heartRate$time <- factor(heartRate$time)
>
> model2a <- lme(HR ~ drug*time, random =~1|person, correlation =corAR1(form=~1|person), data = heartRate)
>
> summary(model2a)
>
> library("lsmeans")
>
> anova(model2a)
>
> lsm <- lsmeans(model2a, ~ drug|time)
>
> lsm
>
> Error in format.default(nm[j], width = nchar(m[1, j]), just = "left") :
> 4 arguments passed to .Internal(nchar) which requires 3
>
>
> pairs(lsm)
>
> pairs(lsm, by = "drug")
>
> The Using lsmeans tutorial (Oct 9, 2015) illustrates the usefulness of the lsmeans package.
>
> Best regards,
>
> James F. Henson
More information about the R-sig-mixed-models
mailing list