[R-sig-ME] Interpreting a MCMCglmm model with a bivariate response variable

Iker Vaquero Alba karraspito at yahoo.es
Wed Sep 23 16:32:00 CEST 2015


   Hi, Jarrod and everyone else.
   Thank you very much for your advise. Actually, I just realized after sending the email, I was going to send the correct one. The model:
testmodel1<-MCMCglmm(cbind(natapshort,nataplong)~gender+age+religion+sexor+selfattr+partnerattr+gender:age+gender:religion+gender:sexor+gender:selfattr+gender:partnerattr+age:religion+age:sexor+age:selfattr+age:partnerattr+religion:sexor+religion:selfattr+religion:partnerattr+sexor:selfattr+sexor:partnerattr+selfattr:partnerattr,random=NULL,rcov=~corg(trait):units,family=c("threshold","threshold"),data=extphen,nitt=100000,singular.ok=TRUE)
 And the summary outcome:
 summary(testmodel1)

 Iterations = 3001:99991
 Thinning interval  = 10
 Sample size  = 9700 

 DIC: 

 R-structure:  ~corg(trait):units

                            post.mean l-95% CI u-95% CI eff.samp
natapshort:natapshort.units    1.0000   1.0000   1.0000        0
nataplong:natapshort.units     0.3469   0.2243   0.4744     7885
natapshort:nataplong.units     0.3469   0.2243   0.4744     7885
nataplong:nataplong.units      1.0000   1.0000   1.0000        0

 Location effects: cbind(natapshort, nataplong) ~ gender + age + religion + sexor + selfattr + partnerattr + gender:age + gender:religion + gender:sexor + gender:selfattr + gender:partnerattr + age:religion + age:sexor + age:selfattr + age:partnerattr + religion:sexor + religion:selfattr + religion:partnerattr + sexor:selfattr + sexor:partnerattr + selfattr:partnerattr 

                       post.mean   l-95% CI   u-95% CI eff.samp   pMCMC   
(Intercept)            3.170e+00 -1.940e+00  8.301e+00     8794 0.21897   
genderM               -1.048e-01 -2.006e+00  1.915e+00     9408 0.90948   
genderO               -5.316e+02 -1.827e+05  1.854e+05     9864 0.99052   
age                   -1.006e+00 -3.414e+00  1.266e+00     8847 0.39959   
religionY             -2.823e+00 -5.121e+00 -5.111e-01     8322 0.01691 * 
sexorHOM               1.338e+03 -1.663e+05  1.738e+05     9700 0.99608   
sexorOT                8.310e+02 -1.580e+05  1.586e+05     9700 0.99732   
selfattr              -8.544e-01 -2.236e+00  5.512e-01     9092 0.22454   
partnerattr            4.296e-01 -9.066e-01  1.784e+00     8818 0.52598   
genderM:age            3.254e-02 -4.556e-01  5.027e-01     9700 0.88557   
genderO:age            2.113e+02 -7.761e+04  7.336e+04     9700 0.99918   
genderM:religionY     -4.660e-01 -1.141e+00  2.360e-01     9503 0.17258   
genderO:religionY      3.408e+02 -1.551e+05  1.567e+05     9700 0.99485   
genderM:sexorHOM      -7.522e-01 -1.687e+00  1.528e-01     9700 0.11155   
genderO:sexorHOM       8.643e+01 -1.468e+05  1.512e+05     9700 0.99258   
genderM:sexorOT       -5.950e-01 -1.661e+00  4.325e-01     9326 0.26742   
genderO:sexorOT        6.955e+02 -1.589e+05  1.664e+05     9700 0.99340   
genderM:selfattr       3.038e-01 -1.054e-01  6.976e-01     9334 0.13526   
genderO:selfattr      -1.968e+02 -7.999e+04  7.118e+04     9341 0.99340   
genderM:partnerattr   -2.686e-01 -6.974e-01  1.595e-01     9345 0.20866   
genderO:partnerattr    1.064e+00 -1.365e+00  3.685e+00     8894 0.41155   
age:religionY          3.473e-01 -3.822e-01  1.100e+00     9215 0.34763   
age:sexorHOM          -6.704e+02 -8.690e+04  8.316e+04     9700 0.99608   
age:sexorOT           -4.160e+02 -7.930e+04  7.899e+04     9700 0.99732   
age:selfattr           3.904e-01 -2.322e-01  9.908e-01     9257 0.20351   
age:partnerattr       -5.805e-02 -6.213e-01  5.200e-01     8974 0.85155   
religionY:sexorHOM     3.131e-01 -8.014e-01  1.381e+00     9700 0.57505   
religionY:sexorOT     -3.484e-03 -1.612e+00  1.651e+00     7850 0.99278   
religionY:selfattr     1.074e-01 -3.688e-01  5.790e-01     8506 0.65649   
religionY:partnerattr  5.330e-01  1.455e-01  8.974e-01     8817 0.00495 **
sexorHOM:selfattr      3.787e-01 -3.850e-01  1.134e+00     9101 0.31588   
sexorOT:selfattr       3.805e-01 -2.086e-01  9.754e-01     9163 0.20866   
sexorHOM:partnerattr   4.977e-01 -2.861e-01  1.323e+00     8472 0.22639   
sexorOT:partnerattr   -7.482e-02 -6.965e-01  5.284e-01     9023 0.80000   
selfattr:partnerattr   5.051e-02 -1.438e-01  2.540e-01     8700 0.62041   
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

 Cutpoints: 
                           post.mean l-95% CI u-95% CI eff.samp
cutpoint.traitnatapshort.1     1.024   0.7313    1.335    872.3
cutpoint.traitnatapshort.2     2.362   2.0725    2.698    756.2
cutpoint.traitnatapshort.3     4.002   3.6299    4.396    884.4
cutpoint.traitnataplong.1      1.187   0.9010    1.489    828.4
cutpoint.traitnataplong.2      2.496   2.1718    2.812    727.6
cutpoint.traitnataplong.3      3.959   3.5890    4.350    872.9
Some additional questions, if that's fine:
1. Do I have to actually include the word 'trait' in the model, something like 'cbind(natapshort, nataplong) ~ trait + gender + age..."? What is the reason for that? Also, do I have to include interactions between 'trait' and other variables? 
2. Why the summary of my model does not give me the DIC value? It appears empty.

Thank you very much. 
Iker


__________________________________________________________________

   Iker Vaquero-Alba
   Visiting Postdoctoral Research Associate
   Laboratory of Evolutionary Ecology of Adaptations 
   Joseph Banks Laboratories
   School of Life Sciences
   University of Lincoln   Brayford Campus, Lincoln
   LN6 7DL
   United Kingdom

   https://eric.exeter.ac.uk/repository/handle/10036/3381


      De: Jarrod Hadfield <j.hadfield at ed.ac.uk>

CC: "r-sig-mixed-models at r-project.org" <r-sig-mixed-models at r-project.org> 
 Enviado: Miércoles 23 de septiembre de 2015 15:25
 Asunto: Re: [R-sig-ME] Interpreting a MCMCglmm model with a bivariate response variable
   
Hi Iker,

You need to follow the advice given to your previous post. With  
unconstrained residual variance the model is largely generating  
nonsense. Use `corg' instead of `us'. Also, depending on what the  
outcomes are you almost certainly need to have `trait' in the fixed  
effect specification.

Jarrod





  
13:28:09 +0000 (UTC):



>
>    Hello all,
>    I am implementing a model with a multiple (bivariate) response  
> variable using MCMCglmm. Both response variables and all the  
> explanatory variables are categorical variables, with between 2 and 
> 6 levels. The model is as follows:
>   
> testmodel1<-MCMCglmm(cbind(natapshort,nataplong)~gender+age+religion+sexor+selfattr+partnerattr+gender:age+gender:religion+gender:sexor+gender:selfattr+gender:partnerattr+age:religion+age:sexor+age:selfattr+age:partnerattr+religion:sexor+religion:selfattr+religion:partnerattr+sexor:selfattr+sexor:partnerattr+selfattr:partnerattr,random=NULL,rcov=~us(trait):units,family=c("threshold","threshold"),data=extphen,nitt=100000,singular.ok=TRUE)
>    And this is the summary of the model after all the iterations:
>   
> summary(testmodel1)  Iterations =3001:99991 Thinninginterval  =  
> 10 Sample size  = 9700   DIC:   R-structure:   
> ~us(trait):units                            post.mean l-95% CI u-95%  
> CI eff.sampnatapshort:natapshort.units    114108   992.1   213000     
> 7.105nataplong:natapshort.units      33245   310.8    66300     
> 4.656natapshort:nataplong.units      33245   310.8    66300     
> 4.656nataplong:nataplong.units       82964   671.5   155869     
> 2.218  Location effects:cbind(natapshort, nataplong) ~ gender + age  
> + religion + sexor + selfattr +partnerattr + gender:age +  
> gender:religion + gender:sexor + gender:selfattr +gender:partnerattr  
> + age:religion + age:sexor + age:selfattr + age:partnerattr+  
> religion:sexor + religion:selfattr + religion:partnerattr +  
> sexor:selfattr +sexor:partnerattr + selfattr:partnerattr  
>                        post.mean   l-95% CI  u-95% CI eff.samp    
> pMCMC   (Intercept)           8.934e+02 -6.995e+02 2.596e+03    
> 275.73 0.22660   genderM              -8.936e+01 -7.437e+0
> 2 5.066e+02  4236.67 0.75794   genderO              -1.292e+03  
> -1.934e+05 1.765e+05  9700.00 0.99052    
> age                  -3.493e+02 -1.170e+03 3.615e+02   505.92  
> 0.31918   religionY            -7.361e+02 -1.598e+03 1.481e+01     
> 33.71 0.03402 * sexorHOM             -1.235e+03  
> -1.808e+05 1.679e+05  9700.00 0.99814   sexorOT               
>   2.193e+03 -1.589e+05  1.687e+05 10583.09 0.97814    
> selfattr             -2.367e+02 -7.424e+02 1.706e+02   314.82  
> 0.24948   partnerattr           1.391e+02 -2.667e+02 6.147e+02    
> 966.40 0.49546   genderM:age           2.696e+01 -1.313e+02   
> 1.748e+02  3786.10 0.69670   genderO:age          -1.055e+04  
> -8.325e+04 7.163e+04  1722.63 0.78474    
> genderM:religionY    -1.295e+02 -3.725e+02 8.194e+01   200.08  
> 0.20495   genderO:religionY    -1.016e+04 -1.589e+05 1.505e+05   
> 8731.86 0.89052   genderM:sexorHOM     -2.245e+02  
> -5.713e+02 4.443e+01   105.67 0.10495    
> genderO:sexorHOM     -8.104e+03 -1.620e+05 1.385e+05  5318.22  
> 0.90474   genderM:sexorOT      -1.52
> 0e+02 -5.124e+02 1.856e+02   423.76 0.33402    
> genderO:sexorOT       2.628e+03 -1.654e+05 1.658e+05  9700.00  
> 0.97670   genderM:selfattr      9.029e+01 -3.152e+01 2.334e+02    
> 119.78 0.12907   genderO:selfattr      6.281e+03  
> -6.511e+04 8.524e+04  3504.67 0.88412    
> genderM:partnerattr  -7.284e+01 -2.160e+02 6.729e+01   263.29  
> 0.25052   genderO:partnerattr   2.536e+02 -5.113e+02 1.121e+03   
> 1291.76 0.49113   age:religionY         8.732e+01  
> -1.283e+02 3.457e+02   727.46 0.42289    
> age:sexorHOM          2.809e+02 -8.592e+04 8.847e+04  9700.00  
> 0.99711   age:sexorOT          -1.246e+03 -8.447e+04 7.941e+04   
> 9370.57 0.97526   age:selfattr          1.195e+02  
> -6.636e+01 3.452e+02   212.35 0.19567    
> age:partnerattr      -8.598e+00 -1.963e+02 1.714e+02  9700.00  
> 0.92227   religionY:sexorHOM    8.506e+01 -2.392e+02 4.612e+02   
> 2059.92 0.59959   religionY:sexorOT     1.420e+01  
> -5.170e+02 5.464e+02  9700.00 0.96268    
> religionY:selfattr    2.782e+01 -1.198e+02 1.833e+02  3520.80  
> 0.68701   religionY:part
> nerattr 1.407e+02  1.423e+01  2.886e+02   22.99 0.00928  
> **sexorHOM:selfattr     1.160e+02 -1.141e+02 3.707e+02   394.74  
> 0.28495   sexorOT:selfattr      1.006e+02 -8.528e+01 3.050e+02    
> 305.50 0.24577   sexorHOM:partnerattr  1.231e+02  
> -1.246e+02 3.990e+02   415.43 0.31072    
> sexorOT:partnerattr  -1.401e+00 -2.007e+02  1.956e+02 9700.00  
> 0.99237   selfattr:partnerattr  5.483e+00 -6.017e+01 7.207e+01   
> 3007.45 0.85464   ---Signif. codes:  0?***? 0.001 ?**? 0.01 ?*? 0.05  
> ?.? 0.1 ? ? 1  Cutpoints:                           post.mean l-95%  
> CI u-95% CI eff.sampcutpoint.traitnatapshort.1     235.2   62.34     
> 376.2    8.822cutpoint.traitnatapshort.2     633.4  202.16     
> 944.0    3.578cutpoint.traitnatapshort.3   1139.5   364.35    
> 1683.7   5.832cutpoint.traitnataplong.1      293.4   54.85     
> 433.7    5.203cutpoint.traitnataplong.2      651.8  223.70     
> 961.6    2.604cutpoint.traitnataplong.3    1023.1   344.82    
> 1483.0   2.353
>   
> So, my question is: in that summary, where are the effect sizes, are  
> they the "post. mean" column? And have they been transformed in some  
> way? Because obviously, for response variables that can only take  
> values 1,2,3,4 or 5, I would expect to see those as the effect size.
> Also, is there any way of knowing to what extent are those results 
> due to each specific response variable, and the degree of covariance  
> between both? Is it possible to get all that information from that 
> summary output I have copied above?
>    Thank you very much.   Iker
>
> __________________________________________________________________
>
>    Iker Vaquero-Alba
>    Visiting Postdoctoral Research Associate
>    Laboratory of Evolutionary Ecology of Adaptations
>    Joseph Banks Laboratories
>    School of Life Sciences
>    University of Lincoln   Brayford Campus, Lincoln
>    LN6 7DL
>    United Kingdom
>
>    https://eric.exeter.ac.uk/repository/handle/10036/3381
>
>
>     [[alternative HTML version deleted]]
>
> _______________________________________________
> R-sig-mixed-models at r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models
>



-- 
The University of Edinburgh is a charitable body, registered in
Scotland, with registration number SC005336.




  
	[[alternative HTML version deleted]]



More information about the R-sig-mixed-models mailing list