[R-sig-ME] Interpreting a MCMCglmm model with a bivariate response variable
Iker Vaquero Alba
karraspito at yahoo.es
Wed Sep 23 15:28:09 CEST 2015
Hello all,
I am implementing a model with a multiple (bivariate) response variable using MCMCglmm. Both response variables and all the explanatory variables are categorical variables, with between 2 and 6 levels. The model is as follows:
testmodel1<-MCMCglmm(cbind(natapshort,nataplong)~gender+age+religion+sexor+selfattr+partnerattr+gender:age+gender:religion+gender:sexor+gender:selfattr+gender:partnerattr+age:religion+age:sexor+age:selfattr+age:partnerattr+religion:sexor+religion:selfattr+religion:partnerattr+sexor:selfattr+sexor:partnerattr+selfattr:partnerattr,random=NULL,rcov=~us(trait):units,family=c("threshold","threshold"),data=extphen,nitt=100000,singular.ok=TRUE)
And this is the summary of the model after all the iterations:
summary(testmodel1) Iterations =3001:99991 Thinninginterval = 10 Sample size = 9700 DIC: R-structure: ~us(trait):units post.mean l-95% CI u-95% CI eff.sampnatapshort:natapshort.units 114108 992.1 213000 7.105nataplong:natapshort.units 33245 310.8 66300 4.656natapshort:nataplong.units 33245 310.8 66300 4.656nataplong:nataplong.units 82964 671.5 155869 2.218 Location effects:cbind(natapshort, nataplong) ~ gender + age + religion + sexor + selfattr +partnerattr + gender:age + gender:religion + gender:sexor + gender:selfattr +gender:partnerattr + age:religion + age:sexor + age:selfattr + age:partnerattr+ religion:sexor + religion:selfattr + religion:partnerattr + sexor:selfattr +sexor:partnerattr + selfattr:partnerattr post.mean l-95% CI u-95% CI eff.samp pMCMC (Intercept) 8.934e+02 -6.995e+02 2.596e+03 275.73 0.22660 genderM -8.936e+01 -7.437e+02 5.066e+02 4236.67 0.75794 genderO -1.292e+03 -1.934e+05 1.765e+05 9700.00 0.99052 age -3.493e+02 -1.170e+03 3.615e+02 505.92 0.31918 religionY -7.361e+02 -1.598e+03 1.481e+01 33.71 0.03402 * sexorHOM -1.235e+03 -1.808e+05 1.679e+05 9700.00 0.99814 sexorOT 2.193e+03 -1.589e+05 1.687e+05 10583.09 0.97814 selfattr -2.367e+02 -7.424e+02 1.706e+02 314.82 0.24948 partnerattr 1.391e+02 -2.667e+02 6.147e+02 966.40 0.49546 genderM:age 2.696e+01 -1.313e+02 1.748e+02 3786.10 0.69670 genderO:age -1.055e+04 -8.325e+04 7.163e+04 1722.63 0.78474 genderM:religionY -1.295e+02 -3.725e+02 8.194e+01 200.08 0.20495 genderO:religionY -1.016e+04 -1.589e+05 1.505e+05 8731.86 0.89052 genderM:sexorHOM -2.245e+02 -5.713e+02 4.443e+01 105.67 0.10495 genderO:sexorHOM -8.104e+03 -1.620e+05 1.385e+05 5318.22 0.90474 genderM:sexorOT -1.520e+02 -5.124e+02 1.856e+02 423.76 0.33402 genderO:sexorOT 2.628e+03 -1.654e+05 1.658e+05 9700.00 0.97670 genderM:selfattr 9.029e+01 -3.152e+01 2.334e+02 119.78 0.12907 genderO:selfattr 6.281e+03 -6.511e+04 8.524e+04 3504.67 0.88412 genderM:partnerattr -7.284e+01 -2.160e+02 6.729e+01 263.29 0.25052 genderO:partnerattr 2.536e+02 -5.113e+02 1.121e+03 1291.76 0.49113 age:religionY 8.732e+01 -1.283e+02 3.457e+02 727.46 0.42289 age:sexorHOM 2.809e+02 -8.592e+04 8.847e+04 9700.00 0.99711 age:sexorOT -1.246e+03 -8.447e+04 7.941e+04 9370.57 0.97526 age:selfattr 1.195e+02 -6.636e+01 3.452e+02 212.35 0.19567 age:partnerattr -8.598e+00 -1.963e+02 1.714e+02 9700.00 0.92227 religionY:sexorHOM 8.506e+01 -2.392e+02 4.612e+02 2059.92 0.59959 religionY:sexorOT 1.420e+01 -5.170e+02 5.464e+02 9700.00 0.96268 religionY:selfattr 2.782e+01 -1.198e+02 1.833e+02 3520.80 0.68701 religionY:partnerattr 1.407e+02 1.423e+01 2.886e+02 22.99 0.00928 **sexorHOM:selfattr 1.160e+02 -1.141e+02 3.707e+02 394.74 0.28495 sexorOT:selfattr 1.006e+02 -8.528e+01 3.050e+02 305.50 0.24577 sexorHOM:partnerattr 1.231e+02 -1.246e+02 3.990e+02 415.43 0.31072 sexorOT:partnerattr -1.401e+00 -2.007e+02 1.956e+02 9700.00 0.99237 selfattr:partnerattr 5.483e+00 -6.017e+01 7.207e+01 3007.45 0.85464 ---Signif. codes: 0‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Cutpoints: post.mean l-95% CI u-95% CI eff.sampcutpoint.traitnatapshort.1 235.2 62.34 376.2 8.822cutpoint.traitnatapshort.2 633.4 202.16 944.0 3.578cutpoint.traitnatapshort.3 1139.5 364.35 1683.7 5.832cutpoint.traitnataplong.1 293.4 54.85 433.7 5.203cutpoint.traitnataplong.2 651.8 223.70 961.6 2.604cutpoint.traitnataplong.3 1023.1 344.82 1483.0 2.353
So, my question is: in that summary, where are the effect sizes, are they the "post. mean" column? And have they been transformed in some way? Because obviously, for response variables that can only take values 1,2,3,4 or 5, I would expect to see those as the effect size.
Also, is there any way of knowing to what extent are those results due to each specific response variable, and the degree of covariance between both? Is it possible to get all that information from that summary output I have copied above?
Thank you very much. Iker
__________________________________________________________________
Iker Vaquero-Alba
Visiting Postdoctoral Research Associate
Laboratory of Evolutionary Ecology of Adaptations
Joseph Banks Laboratories
School of Life Sciences
University of Lincoln Brayford Campus, Lincoln
LN6 7DL
United Kingdom
https://eric.exeter.ac.uk/repository/handle/10036/3381
[[alternative HTML version deleted]]
More information about the R-sig-mixed-models
mailing list