[R-sig-ME] factor specific residual variance for random coefficient model with lmer
li li
hannah.hlx at gmail.com
Thu Jun 11 03:14:11 CEST 2015
Hi all,
I am wondering how to specify the model fm1 below so that the two
groups (treatment and control) specified by the column drug in the
data matrix have different residual variances. Any suggestion?
Please see the codes below.
Thanks very much!
Hanna
set.seed(500)
n.timepoints <- 8
n.subj.per.tx <- 20
sd.d <- 5;
sd.p <- 2;
sd.res <- 1.3
drug <- factor(rep(c("D", "P"), each = n.timepoints, times =
n.subj.per.tx))
drug.baseline <- rep( c(0,5), each=n.timepoints, times=n.subj.per.tx )
Patient <- rep(1:(n.subj.per.tx*2), each = n.timepoints)
Patient.baseline <- rep( rnorm( n.subj.per.tx*2, sd=c(sd.d, sd.p) ),
each=n.timepoints )
time <- factor(paste("Time-", rep(1:n.timepoints, n.subj.per.tx*2),
sep=""))
time.baseline <-
rep(1:n.timepoints,n.subj.per.tx*2)*as.numeric(drug=="D")
dv <- rnorm( n.subj.per.tx*n.timepoints*2,
mean=time.baseline+Patient.baseline+drug.baseline, sd=sd.res )
dat.new <- data.frame(time, drug, dv, Patient)
dat.new$time.num = rep(1:n.timepoints, n.subj.per.tx*2)
library(lme4)
fm1 <- lmer( dv ~ time.num*drug + (0+ drug + time.num | Patient ),
data=dat.new )
summary(fm1)
resid(fm1)
plot(resid(fm1))
More information about the R-sig-mixed-models
mailing list