[R-sig-ME] lme function to obtain pvalue for fixed effect
li li
hannah.hlx at gmail.com
Wed May 27 00:56:54 CEST 2015
You are right! Then I am not sure whether the test in ANOVA
corresponding to a continuous variable makes sense.
Hanna
2015-05-26 16:09 GMT-04:00, Thierry Onkelinx <thierry.onkelinx at inbo.be>:
> Because they test different hypothesis.
>
> ir. Thierry Onkelinx
> Instituut voor natuur- en bosonderzoek / Research Institute for Nature and
> Forest
> team Biometrie & Kwaliteitszorg / team Biometrics & Quality Assurance
> Kliniekstraat 25
> 1070 Anderlecht
> Belgium
>
> To call in the statistician after the experiment is done may be no more
> than asking him to perform a post-mortem examination: he may be able to say
> what the experiment died of. ~ Sir Ronald Aylmer Fisher
> The plural of anecdote is not data. ~ Roger Brinner
> The combination of some data and an aching desire for an answer does not
> ensure that a reasonable answer can be extracted from a given body of data.
> ~ John Tukey
>
> 2015-05-26 21:46 GMT+02:00 li li <hannah.hlx at gmail.com>:
>
>> Thanks so much for replying.
>> Yes LimerTest package could be used to get pvalues when using lmer
>> function. But still the summary and anova function give different
>> pvalues.
>> Hanna
>>
>> 2015-05-26 15:19 GMT-04:00, byron vinueza <byronvinu_8 at hotmail.com>:
>> > You can use the lmerTest package .
>> >
>> >
>> >
>> >
>> >
>> > Enviado desde mi iPhone
>> >
>> >> El 26/5/2015, a las 13:18, li li <hannah.hlx at gmail.com> escribió:
>> >>
>> >> Hi all,
>> >> I am using the lme function to run a random coefficient model. Please
>> >> see
>> >> output (mod1) as below.
>> >> I need to obtain the pvalue for the fixed effect. As you can see,
>> >> the pvalues given using the summary function is different from the
>> >> resutls given in anova function.
>> >> Why should they be different and which one is the correct one to use?
>> >> Thanks!
>> >> Hanna
>> >>
>> >>
>> >>> summary(mod1)
>> >> Linear mixed-effects model fit by REML
>> >> Data: minus20C1
>> >> AIC BIC logLik
>> >> -82.60042 -70.15763 49.30021
>> >>
>> >> Random effects:
>> >> Formula: ~1 + months | lot
>> >> Structure: General positive-definite, Log-Cholesky parametrization
>> >> StdDev Corr
>> >> (Intercept) 8.907584e-03 (Intr)
>> >> months 6.039781e-05 -0.096
>> >> Residual 4.471243e-02
>> >>
>> >> Fixed effects: ti ~ type * months
>> >> Value Std.Error DF t-value p-value
>> >> (Intercept) 0.25831245 0.016891587 31 15.292373 0.0000
>> >> type 0.13502089 0.026676101 4 5.061493 0.0072
>> >> months 0.00804790 0.001218941 31 6.602368 0.0000
>> >> type:months -0.00693679 0.002981859 31 -2.326329 0.0267
>> >> Correlation:
>> >> (Intr) typ months
>> >> type -0.633
>> >> months -0.785 0.497
>> >> type:months 0.321 -0.762 -0.409
>> >>
>> >> Standardized Within-Group Residuals:
>> >> Min Q1 Med Q3 Max
>> >> -2.162856e+00 -1.962972e-01 -2.771184e-05 3.749035e-01 2.088392e+00
>> >>
>> >> Number of Observations: 39
>> >> Number of Groups: 6
>> >>> anova(mod1)
>> >> numDF denDF F-value p-value
>> >> (Intercept) 1 31 2084.0265 <.0001
>> >> type 1 4 10.8957 0.0299
>> >> months 1 31 38.3462 <.0001
>> >> type:months 1 31 5.4118 0.0267
>> >>
>> >> _______________________________________________
>> >> R-sig-mixed-models at r-project.org mailing list
>> >> https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models
>> >
>>
>> _______________________________________________
>> R-sig-mixed-models at r-project.org mailing list
>> https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models
>>
>
More information about the R-sig-mixed-models
mailing list