[R-sig-ME] nested mixed effects logistic regression binomial glm) results differ by function.

Linus Holtermann holtermann at hwwi.org
Fri Apr 24 10:32:27 CEST 2015


Dear Lize,

maybe you give Bayesian methods a try. The excellent MCMCglmm package should be able to handle your model. Often MCMC provides more reliable results when a wide range of variation in group size and relative small number of observations per group are present in the data.

Best regards,

Linus Holtermann
Hamburgisches WeltWirtschaftsInstitut gemeinnützige GmbH (HWWI)
Heimhuder Straße 71
20148 Hamburg
Tel +49-(0)40-340576-336
Fax+49-(0)40-340576-776
Internet: www.hwwi.org
Email: holtermann at hwwi.org
 
Amtsgericht Hamburg HRB 94303
Geschäftsführer: PD Dr. Christian Growitsch | Prof. Dr. Henning Vöpel
Prokura: Dipl. Kauffrau Alexis Malchin
Umsatzsteuer-ID: DE 241849425

-----Ursprüngliche Nachricht-----
Von: R-sig-mixed-models [mailto:r-sig-mixed-models-bounces at r-project.org] Im Auftrag von Thierry Onkelinx
Gesendet: Freitag, 24. April 2015 09:43
An: Lize van der Merwe
Cc: r-sig-mixed-models at r-project.org
Betreff: Re: [R-sig-ME] nested mixed effects logistic regression binomial glm) results differ by function.

Dear Lize,

glmmPQL() uses Penalized Quasi-Likelihood and glmer() uses the likelihood in case of a binomial family. I prefer methods that uses the likelihood.

Best regards,

ir. Thierry Onkelinx
Instituut voor natuur- en bosonderzoek / Research Institute for Nature and Forest team Biometrie & Kwaliteitszorg / team Biometrics & Quality Assurance Kliniekstraat 25
1070 Anderlecht
Belgium

To call in the statistician after the experiment is done may be no more than asking him to perform a post-mortem examination: he may be able to say what the experiment died of. ~ Sir Ronald Aylmer Fisher The plural of anecdote is not data. ~ Roger Brinner The combination of some data and an aching desire for an answer does not ensure that a reasonable answer can be extracted from a given body of data.
~ John Tukey

2015-04-23 18:16 GMT+02:00 Lize van der Merwe <lizestats at gmail.com>:

> Please advise:
>
> I have a dichotomous outcome on 2500 individuals. From 18 geographical 
> areas, and many households nested within areas. I need to assess the 
> association between various predictors and my outcome, adjusting for 
> the correlation within households, as well as within areas. The 
> following R functions provide dramatically different results.
>
> glmer(CC~predictor+1|area/household,family=binomial)
>
> and
>
> glmmPQL(CC~predictor, random=~1|area/household),family=binomial)
>
> Why? Which is correct?
>
> Thanks in advance.  (I posted this on another site too.)
>
> Lize
>
>
>
>
>         [[alternative HTML version deleted]]
>
> _______________________________________________
> R-sig-mixed-models at r-project.org mailing list 
> https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models
>

	[[alternative HTML version deleted]]

_______________________________________________
R-sig-mixed-models at r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models



More information about the R-sig-mixed-models mailing list