[R-sig-ME] calculation max|grad value?
Ben Pelzer
b.pelzer at maw.ru.nl
Fri Apr 10 12:54:41 CEST 2015
Dear list,
For a given model in glmer (lme4_1.1-7), I got the warning message:
3: In checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
Model failed to converge with max|grad| = 0.0601483 (tol = 0.001,
component 17)
My model has 15 fixed effects and two (uncorrelated) random effects.
There has been a lot of correspondence about convergence issues in the
recent lme4 version(s) lately, but I cannot easily find what measure the
"max|grad" is exactly pointing to. If I'm right, it is the "relative
gradient" of one of the model parameters, apparantly parameter 17. But
how exactly is this max|grad calculated? I found a command (coming from
Ben Bolker):
gg <- model7 at optinfo$derivs$grad
which produces gradients that are much larger than 0.0601483, probably
since they are "absolute" gradients.
In the book of Schnabel et al. I found a definition of the relative
gradient in their equation (7.2.3):
Delta(f) * x / f
which I believe must be now interpreted as
gradient * parameters estimate by glmer / loglikelihood
Is this indeed the formula that is used in lme4 to derive the max|grad
and is my interpretation of it correct?
(I would like to reproduce the max|grad value 0.0601483).
And which of the parameters in my model is actually "component 17"
(which the warning message refers to)?
Thanks for any help!
Ben Pelzer.
*--------------------------.
Below is part of the glmer output and also the result from "gg <-
model7 at optinfo$derivs$grad"
Generalized linear mixed model fit by maximum likelihood (Laplace
Approximation) [glmerMod]
Family: binomial ( logit )
Formula: bottom10readA ~ 1 + female2 + (-1 + female2 | Country33) + (1 |
SCHOOLID2) + SES_mean_cen + age_cen + secondgen_mean + native_mean +
Parliament2013_cen + WLMP_cen + HDI2012_cen + selage_cen +
ce + ZSTAND2012C + Fselage2 + FCE2 + FZstand_pisa_cen2
Control:
glmerControl(optimizer = "nloptwrap", optCtrl = list(algorithm =
"NLOPT_LN_BOBYQA"))
AIC BIC logLik deviance df.resid
151434.4 151613.4 -75700.2 151400.4 276524
Scaled residuals:
Min 1Q Median 3Q Max
-4.6982 -0.3104 -0.1819 -0.1126 10.6450
Random effects:
Groups Name Variance Std.Dev.
SCHOOLID2 (Intercept) 2.314767 1.52144
Country33 female2 0.008527 0.09234
Number of obs: 276541, groups: SCHOOLID2, 10643; Country33, 35
Fixed effects:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.1629201 0.1006349 -21.493 < 2e-16 ***
female2 -0.4316766 0.0523024 -8.253 < 2e-16 ***
SES_mean_cen -0.3901277 0.0257537 -15.148 < 2e-16 ***
age_cen -0.1685527 0.0256951 -6.560 5.39e-11 ***
secondgen_mean -0.2462713 0.1269396 -1.940 0.0524 .
native_mean -1.0927106 0.0844515 -12.939 < 2e-16 ***
Parliament2013_cen -0.0020840 0.0025656 -0.812 0.4166
WLMP_cen 0.0002831 0.0027028 0.105 0.9166
HDI2012_cen -0.0338573 0.0600986 -0.563 0.5732
selage_cen 0.0525462 0.0119847 4.384 1.16e-05 ***
ce -0.0902947 0.0496913 -1.817 0.0692 .
ZSTAND2012C -0.0457672 0.1760672 -0.260 0.7949
Fselage2 -0.0092435 0.0096429 -0.959 0.3378
FCE2 -0.0650998 0.0450328 -1.446 0.1483
FZstand_pisa_cen2 -0.4586711 0.1497851 -3.062 0.0022 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
And finally the 17 gradients:
gg
[1] -2.3293884 4.3723284 -5.6278026 0.2851749 1.6813773 -8.3454128
[7] 4.1930703 -5.1109944 49.0449769 207.5065300 20.8115773 -31.4621360
[13] 14.0848733 -3.2661238 -24.9956165 7.0817152 -5.9149812
[[alternative HTML version deleted]]
More information about the R-sig-mixed-models
mailing list