[R-sig-ME] Ordinal data analysis with MCMCglmm

Pierre de Villemereuil bonamy at horus.ens.fr
Thu Feb 12 10:09:41 CET 2015


Hi!

Sorry, I'm inviting myself in the conversation. Jarrod, could you be more 
specific on the difference between "ordinal" and "threshold"?

I gather from you last updated "MCMCglmm Course Notes" that "threshold" uses 
the "latent residual variance" directly in the link function, whereas 
"ordinal" adds another variance of 1, is that right?

Thank you in advance for the clarification.

Cheers,
Pierre.

Le mercredi 11 février 2015, 15:25:27 Jarrod Hadfield a écrit :
> Hi,
> 
> The residual variance is not identifiable in the likelihood for
> ordinal models - you need to fix it at something (e.g. 1):
> 
> prior=list(R=list(V=1, fix=1), ...)
> 
> Note that under family="ordinal" this is equivalent to probit
> regression but with a variance of 2 (rather than the standard 1) in
> the normal cumulative distribution function (i.e. pnorm).
> 
> family="threhold" fits the same model but fixing the unit variance at
> 1 gives the standard probit regression. This implementation samples
> the posterior more efficiently too.
> 
> Cheers,
> 
> Jarrod
> 
> 
> Quoting Luka Rubinjoni <rubinjoni at gmail.com> on Wed, 11 Feb 2015
> 
> 15:13:59 +0100:
> > Dear list members,
> > 
> > 	I'm trying to analyze ordinal data with MCMCglmm, but I keep getting
> > 
> > inconsistent results. I'm a biologist with no experience in Bayesian
> > inference and mixed models, these are my first attempts...
> > 
> > 	I'm exploring herbivory load on a dioecious plant (separate male and
> > 
> > female sex). I used leaf damage as an estimate of herbivory load, by
> > assigning each leaf with a 1 (no damage) to 4 (heavy/severe damage)
> > score. I have sampled about 500 plants from 12 locations, and have about
> > 10 leaves per plant. Plants do not have a constant number of leaves, it
> > ranges from 6 to 17. All plants were collected from natural habitats -
> > there was no experimental setup for a full factorial design. Also,
> > uneven number of plants was sampled from various locations.
> > 
> > 	I wish to determine if one of the sexes (male or female) is more
> > 
> > susceptible to herbivore damage. I would also like to compare sites
> > according to the observed damage, and explore sex*site interaction.
> > Further, I would like to see if some other plant traits (except sex)
> > have an impact on herbivory: plant height, plant mass, leaf number, leaf
> > mass, flower/fruit mass & number, reproductive allocation...
> > 
> > 	I tried running MCMCglmm procedure with the default prior (without
> > 
> > declaring the prior), but I get awkward results (negative DICs, large
> > differences in DICs between runs...). I'm not sure if I'm making any
> > other mistakes, too. Do you have any suggestions for the prior
> > specification?
> > 
> > Best regards,
> > Luka Rubinjoni
> > Faculty of Biology, University of Belgrade
> > 
> > P.S. Here's summary of the data, and output from one of the models:
> >> summary(skorovi)
> >> 
> >        ID           LeafID     score          N
> >  
> >  K24M   :  17   Min.   :   1   1:2248   Min.   : 6.00
> >  M9M    :  17   1st Qu.:1480   2:2982   1st Qu.:10.00
> >  J10M   :  16   Median :2960   3: 564   Median :11.00
> >  K18M   :  16   Mean   :2960   4: 124   Mean   :11.35
> >  M17F   :  16   3rd Qu.:4439            3rd Qu.:12.00
> >  M19M   :  16   Max.   :5918            Max.   :17.00
> >  (Other):5820
> >  
> >      PlantH         FlowerN       InternodeN
> >  
> >  Min.   : 94.0   Min.   : 1.0   Min.   : 4.000
> >  1st Qu.:204.0   1st Qu.: 5.0   1st Qu.: 5.000
> >  Median :231.0   Median :11.0   Median : 6.000
> >  Mean   :233.7   Mean   :15.6   Mean   : 6.131
> >  3rd Qu.:265.0   3rd Qu.:24.0   3rd Qu.: 7.000
> >  Max.   :398.0   Max.   :68.0   Max.   :10.000
> >  
> >      PlantM           LeafM        Sex           Site
> >  
> >  Min.   :0.1690   Min.   :0.1170   F:2891   A2S    : 875
> >  1st Qu.:0.4760   1st Qu.:0.2950   M:3027   A      : 805
> >  Median :0.6120   Median :0.3910            K      : 784
> >  Mean   :0.6816   Mean   :0.4316            M      : 566
> >  3rd Qu.:0.8500   3rd Qu.:0.5310            DJ     : 479
> >  Max.   :2.3020   Max.   :1.5610            P      : 454
> >  
> >                                             (Other):1955
> >        
> >        RA           InfloresenceN      FlowerM
> >  
> >  Min.   :0.001348   Min.   :1.000   Min.   :0.00100
> >  1st Qu.:0.011674   1st Qu.:4.000   1st Qu.:0.00700
> >  Median :0.024943   Median :4.000   Median :0.01700
> >  Mean   :0.065849   Mean   :4.492   Mean   :0.04613
> >  3rd Qu.:0.097990   3rd Qu.:5.000   3rd Qu.:0.05600
> >  Max.   :0.838617   Max.   :9.000   Max.   :0.56100
> >  
> >                     NA's   :2891
> > 
> > CMC200kIDSite <- MCMCglmm(score~Sex, ~ID+Site, rcov=~units,
> > family="ordinal", data=skorovi, DIC=TRUE, nitt=200000, thin=100,
> > burnin=5000)
> > 
> > ...
> > 
> >  MCMC iteration = 200000
> >  
> >   Acceptance ratio for latent scores = 0.897869
> >  
> >  Acceptance ratio for cutpoint set 1 = 0.779000
> >  
> >> summary(MCMC200kIDSite)
> >> 
> >  Iterations = 5001:199901
> >  Thinning interval  = 100
> >  Sample size  = 1950
> >  
> >  DIC: -9100.507
> >  
> >  G-structure:  ~ID
> >  
> >    post.mean l-95% CI u-95% CI eff.samp
> > 
> > ID     12.02   0.3165    24.33    1.436
> > 
> >                ~Site
> >      
> >      post.mean l-95% CI u-95% CI eff.samp
> > 
> > Site     17.89   0.1927    52.11    5.023
> > 
> >  R-structure:  ~units
> >  
> >       post.mean l-95% CI u-95% CI eff.samp
> > 
> > units     40.44    0.198    80.42    1.478
> > 
> >  Location effects: score ~ Sex
> >  
> >             post.mean l-95% CI u-95% CI eff.samp  pMCMC
> > 
> > (Intercept)   2.38948  0.01827  5.96931    5.605 0.0359 *
> > SexM          0.11478 -0.64723  0.90102 1950.000 0.7426
> > ---
> > Signif. codes:  0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1
> > 
> >  Cutpoints:
> >                       post.mean l-95% CI u-95% CI eff.samp
> > 
> > cutpoint.traitscore.1     10.74    2.051    16.73    1.347
> > cutpoint.traitscore.2     16.79    3.203    26.18    1.323
> > 
> >> autocorr(MCMC200kIDSite$Sol)
> > 
> > , , (Intercept)
> > 
> >          (Intercept)       SexM
> > 
> > Lag 0      1.0000000 0.02834661
> > Lag 100    0.4652665 0.12773192
> > Lag 500    0.4637719 0.12885704
> > Lag 1000   0.4608056 0.10518225
> > Lag 5000   0.4426579 0.10261122
> > 
> > , , SexM
> > 
> >          (Intercept)        SexM
> > 
> > Lag 0     0.02834661 1.000000000
> > Lag 100   0.10172481 0.000939134
> > Lag 500   0.13601706 0.003533253
> > Lag 1000  0.13280788 0.040197635
> > Lag 5000  0.11814053 0.070899772
> > 
> >> autocorr(MCMC200kIDSite$VCV)
> > 
> > , , ID
> > 
> >                 ID      Site     units
> > 
> > Lag 0    1.0000000 0.7125238 0.9873699
> > Lag 100  0.9770221 0.7118302 0.9862788
> > Lag 500  0.9692561 0.7054513 0.9799585
> > Lag 1000 0.9644127 0.6951924 0.9737191
> > Lag 5000 0.9104725 0.6701422 0.9193135
> > 
> > , , Site
> > 
> >                 ID      Site     units
> > 
> > Lag 0    0.7125238 1.0000000 0.7214728
> > Lag 100  0.7095693 0.4868717 0.7170873
> > Lag 500  0.7028373 0.5282474 0.7136912
> > Lag 1000 0.7045606 0.5254454 0.7081390
> > Lag 5000 0.6686113 0.4824315 0.6739685
> > 
> > , , units
> > 
> >                 ID      Site     units
> > 
> > Lag 0    0.9873699 0.7214728 1.0000000
> > Lag 100  0.9864973 0.7192773 0.9971748
> > Lag 500  0.9810497 0.7137308 0.9910396
> > Lag 1000 0.9743296 0.7063965 0.9838989
> > Lag 5000 0.9213108 0.6722353 0.9303135
> > 
> > _______________________________________________
> > R-sig-mixed-models at r-project.org mailing list
> > https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models



More information about the R-sig-mixed-models mailing list