[R-sig-ME] [lme4 package] Does the order of rows(trials) in a data frame (long format) affect the results of the lmer model (maybe somehow)?

Ben Bolker bbolker at gmail.com
Thu Jan 8 05:12:55 CET 2015


-----BEGIN PGP SIGNED MESSAGE-----
Hash: SHA1

On 15-01-07 07:13 PM, Zhaohong wrote:
> *I believe that the order shouldn't matter, but I don't know why I
> got different results after fitting the same model in a data frame
> that is ordered differently. *

  We have seen one case where the order does change the results slightly
(https://github.com/lme4/lme4/issues/262) , and have a
not-yet-reproducible report (see prev link) of a case where the order
changes the standard error estimates considerably more.  That the
order affects the results is surprising, but believable; I/we haven't
had a chance yet to dig through and figure out how the ordering could
change the linear algebra, but clearly it does.

   A couple of comments:

* the factor names are different in your two examples (A/B/C vs
RanOrCt/Direction/Running etc.) -- that makes me mildly suspicious that
there might be some other difference in the input data, but maybe you
just forgot to rewrite something.

   Probably the simplest way to double check these results is to do an
experiment where you input the results from each case as starting values
(e.g. update(model1,start=getME(model2,"theta"))) and see what happens.
Hopefully starting from each of those (very similar) starting points will
get you to the same starting point.

  It would also be worth trying a different optimizer (see
https://rpubs.com/bbolker/lme4trouble1 for examples).

  Having a random effect with only 6 levels (Category) is pushing the
envelope a bit, especially as you're trying to fit an 8x8
variance-covariance
matrix ((A*B*C|Category)); you might try recasting that as a fixed effect.

> 
> *Here are my R codes. Did I use the order() function wrongly such
> that I got different results?*
> 
> *The lmer model fitted with the data frame before it is ordered
> (There were no warning messages, and the model was able to
> converge.):*
> 
> *Model1<-lmer(Stimulus.RT~ 
> 1+A*B*C+(1+A|Subject)+(1+A*B*C|Item)+(1+A*B*C|Category), 
> data=edata,verbose=2,control=lmerControl(optCtrl=list(maxfun=500000)))*
>
>  *The verbose results are as follows:* npt = 77 , n =  75 rhobeg =
> 0.2 , rhoend =  2e-07 0.020:  86:     -783.903;0.492578 -0.0462110
> -0.0363706 -0.0207690 -0.00431843 0.00131644 -0.00481740
> -0.00308283 0.502089 -0.0211198 -0.0336018 -0.0237567 -0.00155808
> -0.0307396 -0.000390386 0.354830 -0.0308058 -0.0351383 -0.0137964
> -0.0238208 -0.0133714 0.305507 -0.0174871 -0.0328382 -0.00155512
> 0.00996183 0.646703 -0.0258383 -0.00140789 -0.00146090 0.593574
> -0.0176632 -0.0351208 0.611448 0.000434827 0.819591 0.735976
> -0.105154 0.553306 0.948775 -0.00950248 -0.00976528 -0.0113362 
> -0.00949456 -0.00980388 -0.0100146 -0.00779947 0.946928
> -0.00984788 -0.0101504 -0.00957164 -0.00986887 -0.00987130
> -0.00960832 0.946926 -0.0101303 -0.0103410 -0.00976277 -0.00978197
> -0.00937871 0.947412 -0.00988796 -0.0100200 -0.0103097 -0.0103002
> 0.949607 -0.0106541 -0.00943222 -0.0111189 0.947582 -0.0104333
> -0.00883065 0.949409 -0.0119380 0.954371

  From comparing with the results below, it looks like the first report
(at step "0.020: 86") is identical between versions, but that the two
versions have diverged slightly by the second report ("0.0020: 1139" in
one case, "0.0020: 1266" in the other)

> 0.0020: 1266:     -1011.94;0.450579 -0.0561922 -0.0390931
> 0.00888335 0.0594143 0.0967819 0.0600815 0.0674752 0.220653
> 0.00904686 -0.0695420 -0.0628733 0.117864 -0.0596009 0.0799141
> 0.229251 -0.0664593 -0.123684 0.0490019 -0.0235120 -0.0541726
> 0.118324 -0.0741990 -0.0809683 0.0958857 0.268214 0.249829
> 0.0324988 0.114487 0.128747 0.0173838 0.0167991 -0.00732449
> 0.0501891 0.0850320 0.157297 0.746053 -0.130440 0.331480 0.293937
> 0.0743482 0.0377308 -0.139008 0.0682751 0.0331050 -0.0866526 
> -0.0383130 0.0117850 -0.0240952 0.0400393 0.0809940 -0.0429156
> -0.159851 0.0126200 0.0106298 -0.0212809 0.00295026 -0.00943432
> 0.0602099 -0.0644152 0.00000 0.0531561 0.00504124 0.107394
> -0.0116981 0.177808 -0.0275010 0.0632146 -0.0964148 0.0448545
> 0.0930555 -0.0329402 0.233815 0.111024 0.684505 0.00020: 2829:
> -1024.14;0.452709 -0.0579625 -0.0344969 0.0120118 0.0734510
> 0.0896992 0.0499010 0.0954442 0.229133 0.00559951 -0.0696637 
> -0.0242122 0.111817 -0.0789206 0.0837580 0.222271 -0.0611380
> -0.112126 0.0329055 -0.0277847 -0.00797160 0.120486 -0.0643358
> -0.0845771 0.0736635 0.288591 0.257914 -0.00181955 0.110898
> 0.147722  0.00000 0.000172809 0.00919736 0.0110891 0.0152384
> 0.00828677 0.748922 -0.123172 0.330259 0.206775 0.0476522 0.0280362
> -0.101461 0.0463152 0.0216698 0.0248654 0.170800 0.0176330
> -0.0380416 0.0317560 0.142628 -0.0190826 -0.0671519 -0.00752021
> 0.00000 -0.0188540 0.0493985 -0.0278924 0.112063 -0.127799 0.00000
> 0.0437870 -0.0209737 0.0658322 -0.0777777 0.0965694 -0.0408791 
> 0.127360 -0.174456  0.00000 -0.000274027 -0.0130361 2.24477e-05
> 9.26975e-05 0.0325827 2.0e-05: 5773:     -1024.50;0.453311
> -0.0585468 -0.0356171 0.0124542 0.0734133 0.0881771 0.0507491
> 0.0961264 0.230039 0.00643291 -0.0684440 -0.0227084 0.110856
> -0.0735117 0.0881374 0.222234 -0.0600243 -0.108611 0.0331596
> -0.0250605 -0.00237720 0.120825 -0.0585146 -0.0847106 0.0774464 
> 0.290086 0.261511 -3.75224e-05 0.115623 0.142874  0.00000
> 0.000183608 0.000936919 0.000697002 0.000660236 0.00131320 0.749940
> -0.124134 0.330879 0.212274 0.0477193 0.0297672 -0.103379 0.0384115
> 0.0255082 0.0174492 0.192128 0.0200405 -0.0419245 0.0218963
> 0.182316 -0.0385164 0.00556693 -0.0984504 0.00132058 -0.0348845
> 0.0586401 -0.0444801 0.190766 -0.212638 0.00000 0.000668956
> -0.000403147 0.00142120 -0.00175281  0.00000 0.000166863
> -0.00106768 0.000914863 0.000467674 -0.00274150 0.00346480 
> 0.00114500 -0.000318531 0.00111171 2.0e-06: 9248:
> -1024.51;0.453348 -0.0584731 -0.0355746 0.0125052 0.0734903
> 0.0881831 0.0507601 0.0960166 0.230127 0.00645362 -0.0684865 
> -0.0230384 0.110978 -0.0737085 0.0876321 0.222118 -0.0599844
> -0.108724 0.0331173 -0.0250216 -0.00259363 0.120773 -0.0589481
> -0.0846303 0.0772936 0.289112 0.261172 -0.000167296 0.115547
> 0.144054 9.37833e-07 -2.73741e-05 -4.00219e-05 1.07567e-05
> 3.85261e-05 3.10490e-05 0.750009 -0.124225 0.330861 0.212679
> 0.0477609 0.0298412 -0.103074 0.0371887 0.0264153 0.0144220
> 0.197224 0.0205217 -0.0404589 0.0134622 0.191228 -0.0472840 
> 0.0469882 -0.142964 0.0109281 -0.0403486 0.0179550 -0.0346377
> 0.183949 -0.183214 0.00214351 -0.00362890 0.00276037 -0.0118387
> 0.0131118  0.00000 5.56133e-05 -0.000257805 0.000368822  0.00000
> 0.000199027 -0.000336293 0.000352925 -0.000454433 1.25530e-05 
> 2.0e-07: 15764:     -1024.51;0.453351 -0.0584700 -0.0355723
> 0.0124965 0.0734787 0.0881846 0.0507616 0.0960397 0.230123
> 0.00645416 -0.0684847 -0.0230381 0.110983 -0.0737035 0.0876777
> 0.222123 -0.0599873 -0.108719 0.0331109 -0.0250217 -0.00255763
> 0.120773 -0.0589676 -0.0846268 0.0772896 0.289120 0.261188
> -0.000185005 0.115550 0.144119 2.65656e-06 -6.82831e-06 
> -2.76466e-05  0.00000 1.83385e-05 7.87228e-07 0.750014 -0.124224
> 0.330867 0.212670 0.0477592 0.0298445 -0.103084 0.0371768 0.0264019
> 0.0144639 0.197132 0.0205263 -0.0404874 0.0135545 0.191202
> -0.0472145 0.0466104 -0.142610 0.0108195 -0.0403564 0.0185109
> -0.0348318 0.184403 -0.183997 0.000797901 -0.00138066 0.00103545
> -0.00442881 0.00490172  0.00000 7.51833e-06 -3.87226e-05
> 6.04092e-05  0.00000 3.63510e-06 -4.49410e-06 1.42910e-06
> 5.74795e-06 5.03001e-07 At return 30433:    -1024.5110: 0.453352
> -0.0584699 -0.0355712 0.0124974 0.0734792 0.0881850 0.0507622
> 0.0960430 0.230123 0.00645469 -0.0684872 -0.0230377 0.110983
> -0.0737051 0.0876725 0.222122 -0.0599864 -0.108715 0.0331096 
> -0.0250228 -0.00255738 0.120773 -0.0589583 -0.0846263 0.0772945
> 0.289133 0.261192 -0.000180489 0.115545 0.144090  0.00000
> -1.01443e-06 -2.72331e-06 4.36692e-09 2.82744e-07 1.08531e-07
> 0.750012 -0.124223 0.330865 0.212669 0.0477582 0.0298448 -0.103086
> 0.0371794 0.0264002 0.0144699 0.197126 0.0205267 -0.0404964
> 0.0135892 0.191188 -0.0471837 0.0464530 -0.142440 0.0107821
> -0.0403469 0.0186941 -0.0348872 0.184494 -0.184176 0.000119925 
> -0.000204327 0.000154724 -0.000663551 0.000735230 6.17347e-06
> -3.20551e-06 1.16271e-05 -1.43359e-05  0.00000 1.40493e-06
> -2.16589e-06 1.27346e-06 -2.57135e-06 2.74006e-08
> 
> *The model summary is as follows:* Linear mixed model fit by REML
> ['lmerMod'] Formula: Stimulus.RRT ~ 1 + A * B * C + (1 + A |
> Subject) + (1 + A * B * C | Item) + (1 + A * B * C | Category) 
> Data: edata Control: lmerControl(optCtrl = list(maxfun = 5e+05))
> 
> REML criterion at convergence: -1024.5
> 
> Scaled residuals: Min      1Q  Median      3Q     Max -4.1135
> -0.6290 -0.0239  0.6658  3.4528
> 
> Random effects: Groups   Name                          Variance
> Std.Dev. Corr Item     (Intercept)      .0079856 0.08936
> 
> A1               0.0021904 0.04680  -0.25 B1
> 0.0019678 0.04436  -0.16  0.07 C1               0.0008949 0.02991
> 0.08 -0.46 -0.42 A1:B1            0.0034753 0.05895   0.25 -0.14
> -0.40  0.04 A1:C1            0.0011016 0.03319   0.52  0.51  0.13
> -0.73  0.10 B1:C1            0.0010864 0.03296   0.30 -0.50 -0.21
> 0.65  0.68 -0.39 A1:B1:C1 0.0047121 0.06864   0.28  0.18 -0.04
> 0.57  0.25 -0.11 0.64 Subject  (Intercept)
> 0.0218561 0.14784
> 
> A1                     0.0048530 0.06966  -0.35 Category
> (Intercept)                   0.0017573 0.04192 A1
> 0.0001050 0.01025   0.92 B1                    0.0001028 0.01014
> 0.58  0.22 C1                      0.0004833 0.02198  -0.92 -0.80
> -0.71 A1:B1          0.0014875 0.03857   0.19  0.56 -0.64 -0.09 
> A1:C1            0.0001609 0.01268   0.41  0.09  0.70 -0.27 -0.69 
> B1:C1           0.0014145 0.03761   0.08  0.17  0.05 -0.39  0.34
> -0.67 A1:B1:C1 0.0036161 0.06013   0.65  0.41  0.62 -0.44 -0.39
> 0.93 -0.65 Residual                               0.0388540
> 0.19711
> 
> Number of obs: 4064, groups:  Item, 68; Subject, 64; Category, 6
> 
> Fixed effects: Estimate Std. Error t value (Intercept)
> -0.897455   0.027600  -32.52 A1                      0.002163
> 0.012815    0.17 B1                    -0.085623   0.038088
> -2.25 C1                       0.004287   0.014429    0.30 A1:B1
> -0.005849   0.027516   -0.21 A1:C1             0.112263   0.075240
> 1.49 B1:C1            0.014424   0.026637    0.54 A1:B1:C1
> -0.275033   0.152135   -1.81
> 
> Correlation of Fixed Effects: (Intr) A1 B1 C1 A1:B1 A1:C B1:C1 A1
> -0.017 B1   0.030  0.012 C1    -0.349 -0.216 -0.064 A1:B1  0.093
> 0.091 -0.271 -0.028 A1:C1  0.028  0.014  0.006 -0.230 -0.027 B1:C1
> 0.044  0.000 -0.001 -0.114  0.138   -0.029 A1:B1:C1  0.071  0.025
> 0.010 -0.036 -0.033    0.010 -0.279
> 
> *However, if I reorder the dataset, the model failed to converge:* 
> *edata.reordered<-edata[order(edata$Subject,edata$Item),]*
> 
> *Model2<-lmer(Stimulus.RT~ 
> 1+1+A*B*C+(1+A|Subject)+(1+A*B*C|Item)+(1+A*B*C|Category), 
> data=edata.reordered,verbose=2,control=lmerControl(optCtrl=list(maxfun=500000)))*
>
>  *The model failed to converge, with the following warning messages
> given. The verbose results are as follows:* npt = 77 , n =  75 
> rhobeg =  0.2 , rhoend =  2e-07 0.020:  86:     -783.903;0.492578
> -0.0462110 -0.0363706 -0.0207690 -0.00431843 0.00131644 -0.00481740
> -0.00308283 0.502089 -0.0211198 -0.0336018 -0.0237567 -0.00155808
> -0.0307396 -0.000390386 0.354830 -0.0308058 -0.0351383 -0.0137964
> -0.0238208 -0.0133714 0.305507 -0.0174871 -0.0328382 -0.00155512
> 0.00996183 0.646703 -0.0258383 -0.00140789 -0.00146090 0.593574
> -0.0176632 -0.0351208 0.611448 0.000434827 0.819591 0.735976
> -0.105154 0.553306 0.948775 -0.00950248 -0.00976528 -0.0113362 
> -0.00949456 -0.00980388 -0.0100146 -0.00779947 0.946928
> -0.00984788 -0.0101504 -0.00957164 -0.00986887 -0.00987130
> -0.00960832 0.946926 -0.0101303 -0.0103410 -0.00976277 -0.00978197
> -0.00937871 0.947412 -0.00988796 -0.0100200 -0.0103097 -0.0103002
> 0.949607 -0.0106541 -0.00943222 -0.0111189 0.947582 -0.0104333
> -0.00883065 0.949409 -0.0119380 0.954371 0.0020: 1139:
> -1011.00;0.450616 -0.0596810 -0.0402272 0.0225926 0.0713467
> 0.103440 0.0602312 0.0721565 0.235672 0.00831575 -0.0664559 
> -0.0410181 0.131944 -0.0611257 0.0909471 0.234925 -0.0677961
> -0.0928579 0.0491887 -0.0160378 -0.0609188 0.111951 -0.0797617
> -0.0797398 0.105130 0.265564 0.270820 0.0170410 0.124769 0.199425
> 0.00278578 0.0268160 -0.00875111 0.0510349 0.110946 0.171222
> 0.758551 -0.121379 0.340244 0.289164 0.0340301 0.0299344 -0.127966
> 0.0945493 -0.0521814 -0.0136706 0.0808901 0.00103150 0.00478129
> -0.0168369 -0.0419573 0.0154279 -0.0318584 -0.0284232 0.0113707
> -0.00386646 -0.00455879 0.0266343 -0.0767034 0.0166990 0.0104083
> -0.0298060 0.0336969 -0.0939880 -0.0530341 0.234749 -0.0630262 
> 0.0236229 -0.0798100 0.0822270 -0.0883803 0.0469641 0.374075
> 0.0619410 0.530030 0.00020: 2754:     -1024.04;0.453973 -0.0580443
> -0.0341541 0.0128765 0.0743429 0.0876562 0.0513254 0.0961985
> 0.231256 0.00668522 -0.0689680 -0.0198556 0.111337 -0.0720035
> 0.0878909 0.222762 -0.0592635 -0.109626 0.0323470 -0.0244422
> -0.00152948 0.121270 -0.0558188 -0.0840473 0.0772543 0.292009
> 0.262116 0.000440403 0.116106 0.141180 0.00136894 -0.00339338 
> -0.00197460 0.00348747 0.0105328 0.0115974 0.749943 -0.123029
> 0.330931 0.211777 0.0482195 0.0264188 -0.104392 0.0473197 0.0235507
> 0.0216781 0.184163  0.00000 0.0428526 -0.0310683 -0.175357
> 0.0368789 0.00217481 0.0939259  0.00000 0.0261004 -0.0313647
> 0.0268754 -0.122563 0.125346 0.000144427 -0.00203618 -0.000134387
> -0.00154909 -0.000171925 0.0680554 -0.0371162 0.127778 -0.153718
> 0.0109013 -0.0471354 0.0631039 0.0408311 -0.0496230 0.0145855 
> 2.0e-05: 5427:     -1024.35;0.453500 -0.0588233 -0.0356824
> 0.0125644 0.0734100 0.0880990 0.0508688 0.0959347 0.230738
> 0.00618009 -0.0685843 -0.0222441 0.111017 -0.0734275 0.0869347
> 0.222257 -0.0600188 -0.109157 0.0332115 -0.0247808 -0.00219908
> 0.120720 -0.0585300 -0.0847411 0.0775846 0.290674 0.261498
> -0.000106363 0.115210 0.143180 9.04281e-05 0.000517393 -0.000649503
> 0.000192640 0.000530472 0.00197453 0.749767 -0.124101 0.330961 
> 0.212375 0.0487225 0.0278073 -0.102167 0.0463200 0.0243823
> 0.0162048 0.190955  0.00000 0.0439928 -0.0318335 -0.176979
> 0.0374637 0.00573705 0.0905893 0.00202642 0.0324678 -0.0734993
> 0.0480481 -0.190881 0.220526 0.000424046 -0.000319556 0.000485731
> -0.00232483 0.00320987 0.00183945 -0.000969938 0.00300023
> -0.00391019  0.00000 0.00377342 -0.00500665 0.000579337 -0.00215229
> 0.00124792 2.0e-06: 6708:     -1024.35;0.453448 -0.0588097
> -0.0355748 0.0125304 0.0734757 0.0881016 0.0508944 0.0958161
> 0.230754 0.00612699 -0.0684914 -0.0222696 0.110948 -0.0734877
> 0.0875664 0.222282 -0.0600764 -0.109357 0.0332592 -0.0250735
> -0.00216874 0.120772 -0.0592389 -0.0846883 0.0772328 0.289264
> 0.261555 -0.000223966 0.115482 0.143552 1.82883e-06 8.95088e-05 
> 0.000234107 4.38268e-06 -0.000100557 0.000268633 0.750021
> -0.124161 0.330928 0.212373 0.0486257 0.0278246 -0.102272 0.0464224
> 0.0241039 0.0167711 0.190122  0.00000 0.0439680 -0.0319783
> -0.176695 0.0374161 0.00595413 0.0898001 0.00213386 0.0324226
> -0.0734879 0.0479364 -0.190868 0.220519 0.000515865 -0.000947565
> 0.000694358 -0.00286088 0.00324899 0.00000 9.25677e-05 -0.000493308
> 0.000515791  0.00000 3.22998e-05 1.34428e-06 0.000265348
> -0.000330170  0.00000 2.0e-07: 8013:     -1024.35;0.453452
> -0.0588158 -0.0355775 0.0125249 0.0734807 0.0881052 0.0508818
> 0.0958264 0.230755 0.00613428 -0.0684918 -0.0222859 0.110940
> -0.0735018 0.0875183 0.222287 -0.0600648 -0.109338 0.0332510
> -0.0250861 -0.00212940 0.120774 -0.0592879 -0.0846939 0.0772195 
> 0.289318 0.261524 -0.000225946 0.115515 0.143581 2.96479e-06
> 4.74658e-07 -4.67167e-06 6.32876e-07 -1.68484e-05 1.97228e-05
> 0.750021 -0.124164 0.330935 0.212387 0.0486304 0.0278256 -0.102275
> 0.0464074 0.0241141 0.0168024 0.190120  0.00000 0.0439746
> -0.0319812 -0.176684 0.0373949 0.00599897 0.0897709 0.00214402
> 0.0324037 -0.0735321 0.0479302 -0.190866 0.220458 0.000500648
> -0.000957101 0.000681481 -0.00281640 0.00318786 3.86116e-05
> -1.87433e-05 6.35711e-05 -8.10232e-05 2.14600e-06 -9.10076e-06 
> 1.52841e-05 1.48079e-05 -2.33962e-05 4.43378e-06 At return 9308:
> -1024.3493: 0.453452 -0.0588161 -0.0355779 0.0125253 0.0734813 
> 0.0881053 0.0508814 0.0958291 0.230755 0.00613352 -0.0684914
> -0.0222835 0.110941 -0.0734998 0.0875198 0.222286 -0.0600641
> -0.109337 0.0332509 -0.0250859 -0.00212406 0.120774 -0.0592844
> -0.0846942 0.0772196 0.289324 0.261524 -0.000224812 0.115519
> 0.143582  0.00000 6.69837e-07 2.90331e-06 5.81219e-07 -6.03136e-07
> 3.60563e-06 0.750021 -0.124164 0.330934 0.212389 0.0486307
> 0.0278253 -0.102276 0.0464083 0.0241164 0.0168007 0.190123 0.00000
> 0.0439749 -0.0319808 -0.176684 0.0373947 0.00599638 0.0897735 
> 0.00214274 0.0324038 -0.0735262 0.0479285 -0.190864 0.220444
> 0.000501759 -0.000958368 0.000680990 -0.00282345 0.00319184
> 6.93762e-06 -2.82172e-06 7.79924e-06 -1.11704e-05 1.20920e-08
> 2.23002e-06 -2.13124e-06 2.39686e-06 -2.38538e-06 8.82173e-08 
> *Warning messages:* *1: In checkConv(attr(opt, "derivs"), opt$par,
> ctrl = control$checkConv,  :* *  Model failed to converge with
> max|grad| = 0.761054 (tol = 0.002, component 54)* *2: In
> checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv,
> :* *  Model failed to converge: degenerate  Hessian with 1
> negative eigenvalues*
> 
> *The model summary is as follows:* Linear mixed model fit by REML
> ['lmerMod'] Formula: Stimulus.RRT ~ 1 + RanOrCat * Direction *
> Running + (1 + RanOrCat |      Subject) + (1 + RanOrCat * Direction
> * Running | Item) + (1 + RanOrCat * Direction * Running |
> Category) Data: Edata.Correct.NoBadItems.reordered Control:
> lmerControl(optCtrl = list(maxfun = 5e+05))
> 
> REML criterion at convergence: -1024.3
> 
> Scaled residuals: Min      1Q  Median      3Q     Max -4.1137
> -0.6293 -0.0207  0.6657  3.4540
> 
> Random effects: Groups   Name                  Variance  Std.Dev.
> Corr Item     (Intercept)          7.989e-03 0.089382 RanOrCat1
> 2.203e-03 0.046939 -0.25 Direction1           1.970e-03 0.044390
> -0.16  0.07 Running1             8.953e-04 0.029921  0.08 -0.46
> -0.42 RanOrCat1:Direction  3.488e-03 0.059055  0.25 -0.13  -0.40
> 0.04 RanOrCat1:Running1   1.101e-03 0.033188  0.52  0.51  0.13
> -0.73  0.11 Direction1:Running1  1.085e-03 0.032941  0.30 -0.50 >
> -0.21  0.65  0.67 -0.39 RanOrCat1:Direction1:Running1 4.708e-03
> 0.068615  0.28  0.18
                                                -0.04  0.57  0.25
- -0.11  0.64
> Subject  (Intercept)          2.186e-02 0.147840 RanOrCat1
> 4.854e-03 0.069672 -0.35 Category (Intercept)          1.753e-03
> 0.041865 RanOrCat1            9.189e-05 0.009586  1.00 Direction1
> 1.054e-04 0.010266  0.53  0.53 Running1             4.870e-04
> 0.022067 -0.91 -0.91 -0.72 RanOrCat1:Direction1 1.507e-03 0.038816
> 0.24  0.24 -0.65 -0.07 RanOrCat1:Running1   1.662e-04 0.012892
> 0.37  0.37  0.71 -0.29 -0.70 Direction1:Running1  1.428e-03
> 0.037790  0.09  0.09  0.03 -0.38  0.36 -0.68 
> RanOrCat1:Direction1:Running1 3.606e-03 0.060051  0.62  0.62
                                                0.61 -0.44 -0.39  0.93
- -0.66
> Residual                               3.885e-02 0.197114
> 
> Number of obs: 4064, groups:  Item, 68; Subject, 64; Category, 6
> 
> Fixed effects: Estimate Std. Error t value (Intercept)
> -0.897433   0.027587  -32.53 RanOrCat1
> 0.002115   0.012737    0.17 Direction1                    -0.085626
> 0.038095   -2.25 Running1                       0.004295   0.014451
> 0.30 RanOrCat1:Direction1          -0.005863   0.027579   -0.21 
> RanOrCat1:Running1             0.112270   0.075247    1.49 
> Direction1:Running1            0.014433   0.026681    0.54 
> RanOrCat1:Direction1:Running1 -0.275019   0.152130   -1.81
> 
> Correlation of Fixed Effects: (Intr) RnOrC1 Drctn1 Rnnng1 RnOC1:D1
> ROC1:R Dr1:R1 RanOrCat1   -0.014 Direction1   0.028  0.023 Running1
> -0.345 -0.229 -0.065 RnOrCt1:Dr1  0.109  0.028 -0.272 -0.020 
> RnOrCt1:Rn1  0.027  0.020  0.007 -0.231 -0.028 Drctn1:Rnn1  0.049
> -0.016 -0.002 -0.111  0.145   -0.030 RnOC1:D1:R1  0.068  0.034
> 0.010 -0.036 -0.032    0.010 -0.279
> 
> *If we compare the two model summaries, we can see that the model
> summaries are really similar, with very little differences in
> values. Nevertheless, because Model2 failed to converge, I don't
> know if the model summary is still reliable and ok to report.*
> 
> *Thank you for your time and I truly welcome and appreciate your
> comments.*
> 
> Best, Zhaohong
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.11 (GNU/Linux)

iQEcBAEBAgAGBQJUrgPHAAoJEOCV5YRblxUH6qIIAJYKp9Djg4a8mf22WqIJ7tE6
/GzQTfdknwQgXwvMHbUP47YEE/mU0ms92zWwj6gvwKG+NsHmGmOrn+qGgqCS9LzC
fI1ou5nYLrcSb2If+aXPWkQ2VYKbxyCh+ycuwbTqV5tz2LAEujbZYCKck+ZSXXFS
UbazesAW618+A7VRIUWIuUtDSBA6qSchXjSZTsrosmCCS8JVtI5N2eOR/uCP3atn
SPOPSPUy33hZaMLzZHpzSM6EV/nC9CAJGTaBtiSCiWbJbMeQiHiHJ9Nyk65sPoSS
XOFfAl5FffLao6QWOWMRkD1q8eF8Y8hdagpniClxEvDc793zewzWALpBtXAgI0A=
=VEtd
-----END PGP SIGNATURE-----



More information about the R-sig-mixed-models mailing list