[R-sig-ME] R-sig-mixed-models Digest, Vol 95, Issue 6

Luciano La Sala lucianolasala at yahoo.com.ar
Thu Nov 6 03:27:22 CET 2014


Dear Ken and Ben,

Thank you so much for your prompt responses. This is more frustrating 
than interesting to me. Weird, but the model runs "smoothly" if I use 
nAGQ=0 (output below). Any value other than that yields the mentioned 
error. I have no idea how this Gauss-Hermite Quadrature stuff works, or 
if setting nAGQ to 0 makes my model building strategy (AIC criterion) a 
poor choice. Should I stick with nAGQ=0 then?

 > model.1 <- glmer(Death_2 ~ Year + Sex + Egg_Volume + Hatch_Order + 
(1|Nest_ID), nAGQ=0, family = binomial, data = surv.2)
 > summary(model.1)

Generalized linear mixed model fit by maximum likelihood (Adaptive 
Gauss-Hermite Quadrature, nAGQ =  0)
  [glmerMod]
  Family: binomial  ( logit )
Formula: Death_2 ~ Year + Sex + Egg_Volume + Hatch_Order + (1 | Nest_ID)
    Data: surv.2

      AIC      BIC   logLik deviance df.resid
     22.0     44.7     -4.0      8.0      182

Scaled residuals:
     Min      1Q  Median      3Q     Max
-0.2291  0.0000  0.0000  0.0000  4.4713

Random effects:
  Groups  Name        Variance Std.Dev.
  Nest_ID (Intercept) 0        0
Number of obs: 189, groups:  Nest_ID, 111

Fixed effects:
                     Estimate Std. Error z value Pr(>|z|)
(Intercept)       -4.185e+01  1.538e+04  -0.003    0.998
Year2007           1.933e+01  1.096e+04   0.002    0.999
Sex               -1.878e+01  1.139e+04  -0.002    0.999
Egg_Volume        -5.620e-03  2.077e-01  -0.027    0.978
Hatch_OrderSecond  1.997e+01  1.079e+04   0.002    0.999
Hatch_OrderThird  -3.482e-01  2.544e+04   0.000    1.000

Correlation of Fixed Effects:
             (Intr) Yr2007 Sex    Egg_Vl Htc_OS
Year2007    -0.713
Sex          0.000  0.000
Egg_Volume  -0.001  0.000  0.000
Htch_OrdrSc -0.701  0.000  0.000  0.000
Htch_OrdrTh -0.298  0.000  0.000  0.000  0.424

El 11/5/2014 6:38 PM, r-sig-mixed-models-request at r-project.org escribió:
> Send R-sig-mixed-models mailing list submissions to
> 	r-sig-mixed-models at r-project.org
>
> To subscribe or unsubscribe via the World Wide Web, visit
> 	https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models
> or, via email, send a message with subject or body 'help' to
> 	r-sig-mixed-models-request at r-project.org
>
> You can reach the person managing the list at
> 	r-sig-mixed-models-owner at r-project.org
>
> When replying, please edit your Subject line so it is more specific
> than "Re: Contents of R-sig-mixed-models digest..."
>
>
> Today's Topics:
>
>     1. Re: Error message (Luciano La Sala)
>     2. Re: Error message (Ben Bolker)
>     3. Re: subject level predictions with lme4 from	incomplete
>        longitudinal profile (Tarca, Adi)
>     4. Re: Error message (Ken Beath)
>
>
> ----------------------------------------------------------------------
>
> Message: 1
> Date: Wed, 05 Nov 2014 08:55:27 -0300
> From: Luciano La Sala <lucianolasala at yahoo.com.ar>
> To: Daniel Wright <Daniel.Wright at act.org>
> Cc: "r-sig-mixed-models at r-project.org"
> 	<r-sig-mixed-models at r-project.org>
> Subject: Re: [R-sig-ME] Error message
> Message-ID: <545A102F.3030407 at yahoo.com.ar>
> Content-Type: text/plain; charset="UTF-8"
>
> Thank you Dan,
>
> According to the new version of lme4 I refited my model as follows:
>
> model <- glmer(Death ~ Year + Sex + Egg Volume + Hatch Order + (1|Nest
> ID), family = binomial, data = Data)
> summary(model)
>
> However, the same error message keeps showing up:
>
>
> Error: (maxstephalfit) PIRLS step-halvings failed to reduce deviance in pwrssUpdate
>
>
> Interestingly, if I reduce the model to contain only one main effect
> (whichever), say Hatch_Order, things look better:
>
> model2 <- glmer(Death 2 ~ Hatch Order + (1|Nest_ID), family = binomial,
> data = Data) summary(model2)
>
>
> Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) ['glmerMod']
> Family: binomial  ( logit )
> Formula: Death_2 ~ Hatch_Order + (1 | Nest_ID)
>      Data: surv.2
>
>        AIC      BIC   logLik deviance df.resid
>      118.5    131.8    -55.2    110.5      205
>
> Scaled residuals:
>       Min      1Q  Median      3Q     Max
> -0.7390 -0.1714 -0.1682 -0.1506  3.7689
>
> Random effects:
>    Groups  Name        Variance Std.Dev.
>    Nest_ID (Intercept) 1.586    1.259
> Number of obs: 209, groups:  Nest ID, 115
>
> Fixed effects:
>                     Estimate Std. Error z value Pr(>|z|)
> (Intercept)        -3.4824     1.1274  -3.089  0.00201 **
> Hatch_OrderSecond  -0.1266     0.7576  -0.167  0.86729
> Hatch_OrderThird    2.0486     0.7572   2.705  0.00682 **
> ---
> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
>
> Correlation of Fixed Effects:
>               (Intr) Htc_OS
> Htch_OrdrSc -0.111
> Htch_OrdrTh -0.709  0.276
>
>
> Any pointers please? Best. Luciano
>
>
>
> El 10/22/2014 6:35 PM, Daniel Wright escribi? The lme4 package has changed some. Details are inhttp://arxiv.org/pdf/1406.5823.pdf
>>
>> For your problem, the first thing to note is glmer is now used instead of lmer for generalized linear models.  Glancing at your model the other bits look like they should work.
>>
>> Dan
>>
>> Daniel B. Wright, Ph.D.
>> Statistical Research Division
>> 8701 N. MoPac Expressway, Suite 200, Austin, TX 78759
>> (preferred method of communication is email, use cell if urgent)
>> Office: 512.320.1827
>> Cell: 786 342 4656
>>
>>
>>
>>
>>
>>
>> This email message is intended only for the personal use of the recipient(s) named above. If you are not an intended recipient, you may not review, copy, or distribute this message. If you have received this communication in error, please notify the sender immediately by email and delete the original message.
>>
>>
>>
>> -----Original Message-----
>> From:r-sig-mixed-models-bounces at r-project.org  [mailto:r-sig-mixed-models-bounces at r-project.org] On Behalf Of Luciano La Sala
>> Sent: Wednesday, October 22, 2014 4:20 PM
>> Cc:r-sig-mixed-models at r-project.org
>> Subject: [R-sig-ME] Error message
>>
>> Hello,
>>
>> A few years back I used to fit GLMM (binomial response) using lmer function in lme4. Back then I had to specify the family of response variable  (dead /alive) as binomial. Now I have to refit those models using quite newer versions of both R (R x64 3.1.1) and lme4 (lme4_1.1-7), but things seem to have changed quite a bit.
>>
>> My response variable is death (yes/no), and independent variables are Year (2006 / 2007), Sex (M / F), Egg volume (continuous), and Hatching Order (ordered factor variable, namely first, second, third). I need to control autocorrelation among siblings, so I use "Nest ID" to fit random intercepts for different nests.
>>
>> My model is:
>>
>> model.1 <- lmer(Death_2 ~ Year + Sex + Egg_Volume + Hatch_Order + (1|Nest_ID), family = binomial, data = Data)
>> summary(model.1)
>>
>> But I get the error and warning messages below:
>>
>> Error in eval(expr, envir, enclos) :
>>      (maxstephalfit) PIRLS step-halvings failed to reduce deviance in pwrssUpdate In addition:Warning message:
>> In lmer(Death_2 ~ Year + Sex + Egg_Volume + Hatch_Order + (1 | Nest_ID),  :
>>      calling lmer with 'family' is deprecated; please use glmer() instead
>>
>>
>> Question: how can I circumvent these two issues?
>>
>> Thanks in advance.
>>
>> Luciano
>>
>>
>> 	[[alternative HTML version deleted]]
>>
>> _______________________________________________
>> R-sig-mixed-models at r-project.org  mailing listhttps://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models
>>
>

-- 
Luciano F. La Sala
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)
Cátedra de Epidemiología
Departamento de Biología, Bioquímica y Farmacia
Universidad Nacional del Sur
San Juan 670
Bahía Blanca (8000)
Argentina



More information about the R-sig-mixed-models mailing list