[R-sig-ME] problem with lme4
Steve Walker
steve.walker at utoronto.ca
Tue Mar 11 20:01:11 CET 2014
Mathilde,
My first thought is complete/quasi-complete separation, but I can't be
sure without looking at the data. If I'm right, as the tolerance is
turned down, glmer tries to reach larger and larger values of the
as.factor(AP2)1 coefficient. Once you get too large, numerical
instabilities take over and you get error messages.
For example, when tolPwrss = 1e-5, the linear predictor for observations
in the as.factor(AP2)1 category is about 25, which is an extremely large
number on the logit scale (corresponding to a probability that is pretty
darn close to one).
If I'm right, you might want to try Vince Dorie's blme package, which
can put prior distributions on fixed effect coefficients to keep them
from blowing up.
Cheers,
Steve
On 3/11/2014, 11:43 AM, Saussac Mathilde wrote:
> Dear all,
>
> I am a French student in BioStatistic and I have a question about the package lme4.
>
> I am using the glmer function but it doesn't work ... I have these errors :
>> model <- glmer(Motif ~ as.factor(AP2) + (1|ID), data=d, family=binomial(link="logit"))
> Erreur dans pwrssUpdate(pp, resp, tolPwrss, GQmat, compDev, fac, verbose) :
> Downdated VtV is not positive definite
>
> Or sometimes this one :
> Erreur : pwrssUpdate did not converge in 30 iterations
>
> I found on the web, that we can change the tolerance (Tolpwrss) and indeed it works.
> But, for different values, my results are completely different (see the examples for tolPwrss = 1e-5 and 1e-2) :
>> model <- glmer(Motif ~ as.factor(AP2) + (1|ID), data=d, family=binomial(link="logit"),control= glmerControl(tolPwrss=1e-5, optimizer="bobyqa"))
> Generalized linear mixed model fit by maximum likelihood ['glmerMod']
> Family: binomial ( logit )
> Formula: Motif ~ as.factor(AP2) + (1 | ID)
> Data: d
>
> AIC BIC logLik deviance
> 78.9974 93.2092 -35.4987 70.9974
>
> Random effects:
> Groups Name Variance Std.Dev.
> ID (Intercept) 578.5 24.05
> Number of obs: 258, groups: ID, 218
>
> Fixed effects:
> Estimate Std. Error z value Pr(>|z|)
> (Intercept) 10.205 6.149 1.660 0.097 .
> as.factor(AP2)1 15.057 46157.700 0.000 1.000
> as.factor(AP2)2 9.356 10.219 0.916 0.360
> ---
> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
>
> Correlation of Fixed Effects:
> (Intr) a.(AP2)1
> as.fc(AP2)1 0.000
> as.fc(AP2)2 -0.303 0.000
>
>> model <- glmer(Motif ~ as.factor(AP2) + (1|ID), data=d, family=binomial(link="logit"),control= glmerControl(tolPwrss=1e-2, optimizer="bobyqa"))
> Generalized linear mixed model fit by maximum likelihood ['glmerMod']
> Family: binomial ( logit )
> Formula: Motif ~ as.factor(AP2) + (1 | ID)
> Data: d
>
> AIC BIC logLik deviance
> 112.9273 127.1392 -52.4637 104.9273
>
> Random effects:
> Groups Name Variance Std.Dev.
> ID (Intercept) 3.794 1.948
> Number of obs: 258, groups: ID, 218
>
> Fixed effects:
> Estimate Std. Error z value Pr(>|z|)
> (Intercept) 2.8039 0.4435 6.322 2.58e-10 ***
> as.factor(AP2)1 10.5258 117.9609 0.089 0.9289
> as.factor(AP2)2 2.1162 1.0125 2.090 0.0366 *
> ---
> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
>
> Correlation of Fixed Effects:
> (Intr) a.(AP2)1
> as.fc(AP2)1 -0.004
> as.fc(AP2)2 -0.415 0.002
>
> So I want to know, until which threshold of tolPwrss are results reliable ??
> Is it correct to change this value for all my model ? (Sometimes it doesn't work until I put tolPwrss=0.01 or 0.1 ..)
>
> I hope you will understand what I explained and you will be able to help me ..
>
> If there is few things I haven't been clear, don't hesitate to ask me again.
>
> Thank you for your attention to these matters.
>
> Best regards,
>
> Mathilde
>
>
> [[alternative HTML version deleted]]
>
> _______________________________________________
> R-sig-mixed-models at r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models
>
>
More information about the R-sig-mixed-models
mailing list