[R-sig-ME] lme4: constrain sigma to 0 [SEC=Unclassified]
David Duffy
David.Duffy at qimr.edu.au
Wed Feb 12 09:37:16 CET 2014
For those who would like to fit these models, you could muck around with
the OpenMx package, which allows you to fix or constrain any parameters
you like ;) To fix the residuals to zero, change free to FALSE in the
"residual variances" bit. Parameters with the same "labels" are
automatically constrained equal.
#
# Based on an example in the OpenMX documentation
#
require(lme4)
data(sleepstudy)
sleep2 <- reshape(sleepstudy, direction="wide", idvar="Subject",
timevar="Days")
rownames(sleep2) <- sleep2$Subject
sleep2 <- sleep2[, -1]
names(sleep2) <- gsub("\\.","",names(sleep2)) # Mx no like "."
require(OpenMx)
growthCurveModel <- mxModel("Sleepstudy as Linear Growth Curve Model",
type="RAM",
mxData(
observed=sleep2,
type="raw"
),
manifestVars=names(sleep2),
latentVars=c("intercept","slope"),
# residual variances
mxPath(
from=names(sleep2),
arrows=2,
free=TRUE,
values = rep(1, ncol(sleep2)),
labels=rep("residual", ncol(sleep2))
),
# latent variances and covariance
mxPath(
from=c("intercept","slope"),
arrows=2,
connect="unique.pairs",
free=TRUE,
values=c(1, 1, 1),
labels=c("vari", "cov", "vars")
),
# intercept loadings
mxPath(
from="intercept",
to=names(sleep2),
arrows=1,
free=FALSE,
values = rep(1, ncol(sleep2))
),
# slope loadings
mxPath(
from="slope",
to=names(sleep2),
arrows=1,
free=FALSE,
values=seq(0,9)
),
# manifest means
mxPath(from="one",
to=names(sleep2),
arrows=1,
free=FALSE,
values = rep(0, ncol(sleep2))
),
# latent means
mxPath(from="one",
to=c("intercept", "slope"),
arrows=1,
free=TRUE,
values=c(1, 1),
labels=c("meani", "means")
)
) # close model
growthCurveFit <- mxRun(growthCurveModel)
print(summary(growthCurveFit))
print(growthCurveFit at output$estimate)
| David Duffy (MBBS PhD)
| email: David.Duffy at qimrberghofer.edu.au ph: INT+61+7+3362-0217 fax: -0101
| Genetic Epidemiology, QIMR Berghofer Institute of Medical Research
| 300 Herston Rd, Brisbane, Queensland 4006, Australia GPG 4D0B994A
More information about the R-sig-mixed-models
mailing list