[R-sig-ME] random effects with nbinom glmmadmb

Diaci, Jurij Jurij.Diaci at bf.uni-lj.si
Sat Dec 21 09:09:34 CET 2013


Dear Ben,
thank you very much for the help.
*1 Sorry for the mistake with fixed effects. This was due to translation of variable names from 
Slovene. In this replay R output is original, and the legend is following:
Odd = opening, random 4 levels
PL_VR = relief, fixed 2 levels (sinkhole and plateau)
N_O = fence, fixed 2 levels
C_S = location, fixed 2 levels (forest edge and center)
*2 You were right about including of "opening" as fixed effect. Results are appended below.
*3a Below are also results from GLMM. I've applied anova test for two fits - one without fence 
effects and the differnce is not significant (p = 0.05919).
Should I proceed in this way for all the effects and report this p values in paper? I usually work 
with glm.nb and drop1 function to get significant effects and then continue with glmmadmb which is 
slower. Is this OK?
*3b I've tried also mcmc.opts with 1000 iterations and results look OK.
I've got so far following estimates and errors (parenthesis) for fence (N_O) effect:
GLM with opening     0.444(0.118)
GLM without opening  0.862(0.244)
GLMM                  0.488(0.211)
GLMM with MCMC        0.542(0.315)
(1000 iterations)
How many iterations are neccessary?
I guess there are no p values for the effects in mcmc, but only estimates and errors?
Shuld I report comparative anova results for p values, and estimates and errors from MCMC?
How can the geweke.diag outpot for N_O[T.og] 1.0322 be interpreted?
*3c Vinnete example works fine, thank you very much. I've found only one problem/error with the 
line:
# tm <- tm[, !grepl("^u\\", colnames(m))]
# Error in grepl("^u\\", colnames(m)) :   invalid regular expression '^u\', reason 'Trailing backslash'

Best regards,
Jurij

*******************************************************
Ad *2 Results from GLM with oppening as a fixed effect.
Call:
glm.nb(formula = sm_si ~ PL_VR + N_O + C_S + Leto + PL_VR:C_S + 
    Odd, data = krese2, link = "log", init.theta = 0.6738688778)
Deviance Residuals: 
    Min       1Q   Median       3Q      Max  
-2.1282  -1.1526  -0.4309   0.3075   2.8425  
Coefficients: (1 not defined because of singularities)
                        Estimate Std. Error z value Pr(>|z|)    
(Intercept)               1.3243     0.1696   7.807 5.84e-15 ***
PL_VR[T.vrt]              0.2319     0.1668   1.390 0.164455    
N_O[T.og]                 0.8618     0.2437   3.536 0.000405 ***
C_S[T.rob]                0.7444     0.1664   4.473 7.70e-06 ***
Leto[T.2013]             -0.4120     0.1167  -3.531 0.000415 ***
Odd[T.39]                -0.1253     0.2361  -0.531 0.595541    
Odd[T.42]                 0.5644     0.1669   3.381 0.000723 ***
Odd[T.51]                     NA         NA      NA       NA    
PL_VR[T.vrt]:C_S[T.rob]  -0.5412     0.2368  -2.285 0.022301 *  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for Negative Binomial(0.6739) family taken to be 1)
    Null deviance: 610.76  on 479  degrees of freedom
Residual deviance: 545.05  on 472  degrees of freedom
AIC: 2927.7
Number of Fisher Scoring iterations: 1

              Theta:  0.6739 
          Std. Err.:  0.0487 
 2 x log-likelihood:  -2909.6520
*******************************************************
Ad *3a Results from GLMM
Call:
glmmadmb(formula = sm_si ~ PL_VR + N_O + C_S + Leto + PL_VR:C_S + 
    (1 | Odd), data = krese2, family = "nbinom")
AIC: 2933.7 
Coefficients:
                Estimate Std. Error z value Pr(>|z|)    
(Intercept)        1.588      0.194    8.20  2.4e-16 ***
PL_VRvrt           0.243      0.170    1.43  0.15350    
N_Oog              0.488      0.211    2.31  0.02082 *  
C_Srob             0.785      0.172    4.56  5.0e-06 ***
Leto2013          -0.408      0.118   -3.46  0.00054 ***
PL_VRvrt:C_Srob   -0.541      0.240   -2.26  0.02413 *  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Number of observations: total=480, Odd=4 
Random effect variance(s):
Group=Odd
            Variance StdDev
(Intercept)  0.02702 0.1644
Negative binomial dispersion parameter: 0.66844 (std. err.: 0.048389)
Log-likelihood: -1458.86
*******************************************************
Ad *3b
Iterations = 1:1000
Thinning interval = 1 
Number of chains = 1 
Sample size per chain = 1000 
1. Empirical mean and standard deviation for each variable,
   plus standard error of the mean:
                             Mean      SD Naive SE Time-series SE
(Intercept)              1.589093 0.25872 0.008182       0.049969
PL_VR[T.vrt]             0.230967 0.16032 0.005070       0.024057
N_O[T.og]                0.542544 0.31503 0.009962       0.066181
C_S[T.rob]               0.784867 0.17890 0.005657       0.028402
Leto[T.2013]            -0.369402 0.11369 0.003595       0.017880
PL_VR[T.vrt]:C_S[T.rob] -0.540553 0.22776 0.007203       0.032046
tmpL                     0.268618 0.19983 0.006319       0.049266
alpha                    0.664778 0.04325 0.001368       0.006534
u.1                      0.009318 0.50282 0.015900       0.099104
u.2                     -0.245842 0.70595 0.022324       0.131085
u.3                      0.650843 0.55947 0.017692       0.118921
u.4                     -0.872515 0.69354 0.021932       0.201181
2. Quantiles for each variable:
                             2.5%     25%     50%     75%   97.5%
(Intercept)              0.930400  1.4410  1.5882  1.7564  2.0519
PL_VR[T.vrt]            -0.066268  0.1125  0.2209  0.3400  0.5594
N_O[T.og]               -0.009899  0.3491  0.5050  0.6717  1.3622
C_S[T.rob]               0.414240  0.6696  0.7848  0.9348  1.0667
Leto[T.2013]            -0.621706 -0.4321 -0.3664 -0.3002 -0.1434
PL_VR[T.vrt]:C_S[T.rob] -1.033963 -0.7135 -0.5374 -0.3748 -0.1126
tmpL                     0.004204  0.1227  0.2268  0.3824  0.7823
alpha                    0.589223  0.6349  0.6655  0.6885  0.7551
u.1                     -1.014267 -0.2826  0.0225  0.3082  1.0957
u.2                     -1.735785 -0.6892 -0.1468  0.2218  0.9345
u.3                     -0.370678  0.2548  0.6098  1.0719  1.7863
u.4                     -2.133338 -1.3691 -0.9411 -0.3733  0.5059


More information about the R-sig-mixed-models mailing list