[R-sig-ME] Looking for residuals in clmm summary output

aline.frank at wsl.ch aline.frank at wsl.ch
Tue Nov 12 20:40:38 CET 2013


Hello

I am working with ordinal data using the clmm() mixed models approach of the R package "ordinal". My interest is in analyzing the random effects of my model, inclusive the residual term. However, the summary of my model does not inlude the residuals. Does this mean that my residuals are "hidden" in one of the random effects, or is there a way to get the residuals anyway? Below you see my model summary output.

Thanks for every hint!

Aline



model <- clmm(trait~1+(1|Block_Nr)+(1|Pop_Nr)+(1|Fam_Nr)+(1|Block_Nr:Pop_Nr),data=dat)

Data: frost damage on the plants in levels 0-5

Output R:

Cumulative Link Mixed Model fitted with the Laplace approximation

formula: trait ~ 1 + (1 | Block_Nr) + (1 | Pop_Nr) + (1 | Fam_Nr) + (1 |      Block_Nr:Pop_Nr)
data:    dat

 link  threshold nobs logLik   AIC     niter     max.grad cond.H
 logit flexible  4018 -2015.57 4047.14 660(2644) 2.93e-03 3.6e+01

Random effects:
 Groups          Name        Variance Std.Dev.
 Block_Nr:Pop_Nr (Intercept) 0.0000   0.0000  
 Fam_Nr          (Intercept) 0.1085   0.3294  
 Pop_Nr          (Intercept) 0.2694   0.5191  
 Block_Nr        (Intercept) 0.1351   0.3675  
Number of groups:  Block_Nr:Pop_Nr 1435,  Fam_Nr 258,  Pop_Nr 90,  Block_Nr 16

No Coefficients

Threshold coefficients:
    Estimate Std. Error z value
0|1   1.9701     0.1221   16.14
1|2   3.7404     0.1488   25.13
2|3   4.5441     0.1791   25.37
3|4   5.3417     0.2322   23.00
(103 observations deleted due to missingness)



More information about the R-sig-mixed-models mailing list