[R-sig-ME] Looking for residuals in clmm summary output
aline.frank at wsl.ch
aline.frank at wsl.ch
Tue Nov 12 20:40:38 CET 2013
Hello
I am working with ordinal data using the clmm() mixed models approach of the R package "ordinal". My interest is in analyzing the random effects of my model, inclusive the residual term. However, the summary of my model does not inlude the residuals. Does this mean that my residuals are "hidden" in one of the random effects, or is there a way to get the residuals anyway? Below you see my model summary output.
Thanks for every hint!
Aline
model <- clmm(trait~1+(1|Block_Nr)+(1|Pop_Nr)+(1|Fam_Nr)+(1|Block_Nr:Pop_Nr),data=dat)
Data: frost damage on the plants in levels 0-5
Output R:
Cumulative Link Mixed Model fitted with the Laplace approximation
formula: trait ~ 1 + (1 | Block_Nr) + (1 | Pop_Nr) + (1 | Fam_Nr) + (1 | Block_Nr:Pop_Nr)
data: dat
link threshold nobs logLik AIC niter max.grad cond.H
logit flexible 4018 -2015.57 4047.14 660(2644) 2.93e-03 3.6e+01
Random effects:
Groups Name Variance Std.Dev.
Block_Nr:Pop_Nr (Intercept) 0.0000 0.0000
Fam_Nr (Intercept) 0.1085 0.3294
Pop_Nr (Intercept) 0.2694 0.5191
Block_Nr (Intercept) 0.1351 0.3675
Number of groups: Block_Nr:Pop_Nr 1435, Fam_Nr 258, Pop_Nr 90, Block_Nr 16
No Coefficients
Threshold coefficients:
Estimate Std. Error z value
0|1 1.9701 0.1221 16.14
1|2 3.7404 0.1488 25.13
2|3 4.5441 0.1791 25.37
3|4 5.3417 0.2322 23.00
(103 observations deleted due to missingness)
More information about the R-sig-mixed-models
mailing list