[R-sig-ME] R-sig-mixed-models Digest, Vol 81, Issue 40
Ben Bolker
bbolker at gmail.com
Tue Sep 24 16:33:13 CEST 2013
Johannes Radinger <johannesradinger at ...> writes:
>
> > Today's Topics:
> >
> > 1. Re: pwrssUpdate Error with new version of lme4 (Steve Walker)
> >
> >
> >
> Hi,
>
> > Thanks for the reproducible example. Unfortunately, I can't reproduce
> > your "pwrssUdate did not converge..." error.
> Instead I get another error:
> >
I was able to reproduce this. While the data initially seemed to
me to be a bit on the edge (only three species present, nearly complete
separation in one of them), I did check -- lme4.0, glmmML, and
glmmADMB are all able to handle this case without too much difficulty
(although they do give warnings of "glm.fit: fitted probabilities of
0 or 1 occurred"). We will definitely see if we can figure out what
the problem is and make lme4 more robust for this case.
Are you willing to have your data available as a test case
(in which case they would be available on Github, although not
in a very prominent place)?
library(lme4)
## source("radinger_dat.R") ## get data
mydf <- transform(mydf,species=droplevels(species))
mod <- glmer(presabs~predictor+(1|species),family=binomial,data=mydf)
mod2 <- glmer(presabs~predictor+(1|species),family=binomial,data=mydf,
nAGQ=0)
mod2 <- glmer(presabs~predictor+(1|species),family=binomial,data=mydf,
nAGQ=0,
control=glmerControl(optimizer="bobyqa"),
verbose=100)
library(ggplot2)
ggplot(mydf,aes(x=predictor,y=presabs,colour=species))+geom_point()
with(mydf,table(species))
with(mydf,table(presabs,species,predictor>0))
minz <- with(mydf,min(predictor[predictor>0]))
library("mgcv")
ggplot(mydf,aes(x=log10(predictor+minz/2),y=presabs,colour=species))+
geom_point()+geom_smooth(method="gam",family=binomial)+
facet_wrap(~species)
ggplot(mydf,aes(x=predictor,y=presabs,colour=species))+
geom_point()+geom_smooth(method="glm",family=binomial)+
facet_wrap(~species,scale="free_x")
lmList(presabs~predictor|species,family=binomial,data=mydf)
## Coefficients:
## (Intercept) predictor
## Pungtius -0.39436885 959.554470
## Rutiilus -0.02894044 2.704616
## Salmario 0.94294617 2.866079
g1 <- glm(presabs~species+predictor:species-1,family=binomial,data=mydf)
summary(g1)
library(lme4.0)
mod3 <- glmer(presabs~predictor+(1|species),family=binomial,data=mydf)
library(glmmADMB)
mod4 <- glmmadmb(presabs~predictor+(1|species),family="binomial",data=mydf)
summary(mod4)
library(glmmML)
mod5 <- glmmML(presabs~predictor,cluster=species,family=binomial,data=mydf)
More information about the R-sig-mixed-models
mailing list