[R-sig-ME] Help with Interpretation of LMER Output--Correctly Formatted Post (I Hope)
Ben Bolker
bbolker at gmail.com
Sat Aug 24 22:53:03 CEST 2013
AvianResearchDivision <segerfan83 at ...> writes:
>
> Hi all,
>
> I have a somewhat basic question that I thought I knew the answer to before
> I started to look at lattice plots of my data compared to the lmer summary
> output. The output is as follows:
>
> Summary(lf.lmer)
Is this from lmerTest? Otherwise, how are you getting p-values
on the fixed effects ... ?
>
> Linear mixed model fit by REML
> Formula: LF ~ Environ+Year+NT+Environ*NT+ (Environ+0|Male) + (1|Male)
By the way, the main effects Environ and NT are redundant (but
harmless) here: Environ*NT is equivalent to Environ+NT+Environ:NT
(main effects plus interaction), so you could write the fixed effects
as Environ*NT+Year
> Data: data
> AIC BIC logLik REMLdev
> 10375 10508 -5160 10611 10319
>
> Random effects:
> Groups Name Variance Std.Dev.
> Male Environ 19339.7 139.067
> Male (Intercept) 136682.2 369.706
> Residual 8494.6 92.166
>
> Number of obs: 864, groups: Male, 59
> Fixed effects:
> Estimate Std. Error t value Pr(>|t|)
(Intercept) 3882.30 146.14 26.565 < 2e-16 ***
> Environ 181.37 81.29 2.231 0.030498 *
> Year2012 -227.81 109.46 -2.081 0.043033 *
> NT2 -695.88 204.01 -3.411 0.001332 **
> NT3 -512.99 169.77 -3.022 0.003990 **
> NT4 -923.74 257.62 -3.58 0.000793 ***
> NT5 -497.34 301.71 -1.648 0.106198
> NT6 -492.54 205.25 -2.400 0.020442 *
> NT7 -140.23 256.88 -0.546 0.587749
> NT8 89.31 191.34 0.467 0.642776
> NT9 288.10 295.87 0.974 0.335439
> NT10 956.39 297.30 3.217 0.002381 **
> NT11 -462.32 258.87 -1.786 0.080401 .
> NT12 788.41 398.64 1.978 0.054255 .
> Environ:NT2 202.60 107.99 1.876 0.069236 .
> Environ:NT3 -178.25 97.34 -1.831 0.074108 .
> Environ:NT4 -167.50 141.26 -1.186 0.243358
> Environ:NT5 149.19 157.95 -0.945 0.350711
> Environ:NT6 161.91 113.32 1.429 0.161585
> Environ:NT7 -227.35 138.57 -1.641 0.111677
> Environ:NT8 -86.25 107.79 -0.800 0.428252
> Environ:NT9 -106.92 156.84 -0.682 0.499778
> Environ:NT10 -43.84 153.00 -0.287 0.776171
> Environ:NT11 -106.55 143.89 -0.740 0.463213
> Environ:NT12 -275.49 197.23 -1.397 0.172351
>
> Anova(lf.lmer,ddf=Kenward-Rogers)
>
> Analysis of Variance Table with Kenward-Roger approximation for degrees
> of freedom
>
Sum Sq Mean Sq F value Denom Pr(>F)
> Environ 224985 224985 9.4594 37.189 0.003926
> Year 74638 74638 4.3218 46.033 0.043227
> NT 602363 54760 6.5773 46.192 1.86e-06
> Environ:NT 272641 24786 2.9015 37.309 0.007367
Note that these are mostly questions about basic R model formulations,
not specific to mixed models. The answers are specific to the
default "treatment" contrasts.
> 1). Is the population LF 3882.30 and the average response to an increase
> in 1 unit of Environ 181.37 or are these NT1's results? If these are the
> population estimates and note NT1's results, where are NT1's results?
If you used default treatment contrasts, LF is the effect in the
baseline level (NT1).
> 2). Is LF in Year2012 227.81 lower than 2011 or 227.81 lower than the
> population?
LF *in the baseline level* (NT1, Environ=0) is 227.81 lower in Year 2012
than in Year 2011 *in the baseline level*
> 3). Is NT2's intercept -695.88 lower than NT1 or the population?
NT1 (in the base level: Year 2011, Environ=0)
> 4). How do I interpret the interaction between Environ and NT? I am
> assuming that I ignore Environ and pay attention to the significance of
> each interaction, which in that case means there is not significant change
> in LF in response to Environ for each NT. Is this true? If so, why does
> that anova table say that this interaction is highly significant
> (p=0.007367)?
Because the combined significance of all the individual Environ-by-NT
interactions is significant.
> I'm sorry if this seems overly trivial and easy, but I am second guessing
> myself a lot right now. Any help would be greatly appreciated. I tried to
> format the output so all items are lined up neatly, I apologize if after
> posting, things are not aligned.
You should probably read a more general treatment of model formulation
and contrasts in R, e.g. Faraway's book on linear regression (I believe
there's a version in the 'contributed documentation' section on CRAN).
good luck
Ben Bolker
More information about the R-sig-mixed-models
mailing list