[R-sig-ME] Fwd: Linear Mixed-Effects Models - lme() command
Domenico Di Carlo
pvt.math82 at gmail.com
Tue Aug 6 18:44:29 CEST 2013
---------- Forwarded message ----------
From: Domenico Di Carlo <pvt.math82 at gmail.com>
Date: 2013/8/6
Subject: Linear Mixed-Effects Models - lme() command
To: bates at stat.wisc.edu
Dear Mr. Douglas Bates,
I have some questions about Linear Fixed Effects Models and about
*lme()*command of
*nlme* library of *R*.
This is dataset (called D) structure
*'data.frame': 187 obs. of 5 variables:*
* $ ID : num 2492 2492 2492 2492 2492 ...*
* $ Cat1 : Factor w/ 3 levels "One","three",..: 2 2 2 2 2 2 2 2 2 2 ...*
* $ Cat2 : Factor w/ 3 levels "first","second",..: 1 1 1 1 1 1 1 1 1 1 ...*
* $ Values: num 253 320 424 432 476 434 527 476 468 544 ...*
* $ time : num 0 1 1 1 1 1 2 2 2 3 ...*
The aim is to undestand *Values* changes in *Cat1* and *Cat2* levels across
the *time*. The line command I have used is:
*> library(nlme)*
*> model_1<-lme(Values~time:Cat1+time:Cat2,*
*+ random=~1|ID, data=D)*
*> summary(model_1)*
*Linear mixed-effects model fit by REML*
* Data: D *
* AIC BIC logLik*
* 2295.15 2320.738 -1139.575*
*
*
*Random effects:*
* Formula: ~1 | ID*
* (Intercept) Residual*
*StdDev: 107.022 114.4641*
*
*
*Fixed effects: Values ~ time:Cat1 + time:Cat2 *
* Value Std.Error DF t-value p-value*
*(Intercept) 324.0124 43.49774 175 7.448947 0.0000*
*time:Cat1One 51.4522 17.16804 175 2.996976 0.0031*
*time:Cat1three 47.0102 8.56644 175 5.487712 0.0000*
*time:Cat1two 69.5621 15.68291 175 4.435532 0.0000*
*time:Cat2[T.second] -24.4386 13.75771 175 -1.776360 0.0774*
*time:Cat2[T.third] -21.3869 19.35976 175 -1.104710 0.2708*
* Correlation: *
* (Intr) tm:C1O tm:Ct1th tm:Ct1tw tm:Ct2[T.s]*
*time:Cat1One -0.084 *
*time:Cat1three -0.191 0.497 *
*time:Cat1two -0.104 0.711 0.546 *
*time:Cat2[T.second] 0.026 -0.803 -0.605 -0.879 *
*time:Cat2[T.third] 0.018 -0.882 -0.430 -0.625 0.711 *
*
*
*Standardized Within-Group Residuals:*
* Min Q1 Med Q3 Max *
*-3.0730790 -0.4341496 0.0301899 0.4023551 5.4252466 *
*
*
*Number of Observations: 187*
*Number of Groups: 7 *
About *time:Cat1One*, *time:Cat1three* and *time:Cat1two*, I guess (maybe
you can correct me) they are slopes of *Cat1* levels, I mean the average
increase of *Value* year after year. About *time:Cat2[T.second]* and *
time:Cat[T.third]*, I guess they are differences from slope of dummy of *
Cat2*, I mean *first* level of the variable. But to understand the real
meaning of this difference, I need to see the real value of *
time:Cat[T.first]*. Is it possible to see it? I was thinking that maybe
this value is the *intercept*, but its value *(324.0124)* is not the
estimate I was waiting for.
I have fitted a second model:
*> model_2<-lme(Values~time*Cat1+time*Cat2,*
*+ random=~1|ID, data=D)*
*> summary(model_2)*
*Linear mixed-effects model fit by REML*
* Data: D *
* AIC BIC logLik*
* 2253.048 2291.162 -1114.524*
*
*
*Random effects:*
* Formula: ~1 | ID*
* (Intercept) Residual*
*StdDev: 100.3245 114.4606*
*
*
*Fixed effects: Values ~ time * Cat1 + time * Cat2 *
* Value Std.Error DF t-value p-value*
*(Intercept) 200.91095 171.01061 175 1.1748450 0.2417*
*time 54.11604 17.93540 175 3.0172746 0.0029*
*Cat1[T.three] 150.09485 151.92072 2 0.9879814 0.4273*
*Cat1[T.two] 270.12004 131.59306 2 2.0526921 0.1765*
*Cat2[T.second] -44.75005 133.55838 2 -0.3350599 0.7695*
*Cat2[T.third] 58.30254 202.25915 2 0.2882566 0.8003*
*time:Cat1[T.three] -8.11917 15.53307 175 -0.5227025 0.6018*
*time:Cat1[T.two] 10.91819 13.08954 175 0.8341161 0.4054*
*time:Cat2[T.second] -22.90242 14.49702 175 -1.5798018 0.1160*
*time:Cat2[T.third] -22.43406 20.29314 175 -1.1054997 0.2705*
* Correlation: *
* (Intr) time Ct1[T.th] Ct1[T.tw] Ct2[T.s] Ct2[T.t]*
*time -0.314 *
*Cat1[T.three] -0.888 0.259 *
*Cat1[T.two] -0.507 0.136 0.571 *
*Cat2[T.second] -0.781 0.268 0.575 0.000 *
*Cat2[T.third] -0.846 0.265 0.751 0.429 0.660 *
*time:Cat1[T.three] 0.265 -0.866 -0.299 -0.157 -0.185 -0.224 *
*time:Cat1[T.two] 0.143 -0.475 -0.161 -0.298 0.000 -0.121 *
*time:Cat2[T.second] 0.259 -0.808 -0.175 0.000 -0.332 -0.219 *
*time:Cat2[T.third] 0.277 -0.884 -0.229 -0.120 -0.237 -0.314 *
* tm:Ct1[T.th] tm:Ct1[T.tw] tm:Ct2[T.s]*
*time *
*Cat1[T.three] *
*Cat1[T.two] *
*Cat2[T.second] *
*Cat2[T.third] *
*time:Cat1[T.three] *
*time:Cat1[T.two] 0.548 *
*time:Cat2[T.second] 0.576 0.000 *
*time:Cat2[T.third] 0.765 0.420 0.714 *
*
*
*Standardized Within-Group Residuals:*
* Min Q1 Med Q3 Max *
*-3.19403849 -0.41767624 0.03823682 0.44202369 5.35682026 *
*
*
*Number of Observations: 187*
*Number of Groups: 7 *
In this last model, I guess interactions terms differences are related to
the term *time*, but I do not understand if this term is the dummy of *Cat1*or
*Cat2*.
I am sorry if I have written something wrong, I hope you can help me to
understand my doubts. I am sending to you all the materials.
Best regards
Domenico Di Carlo
More information about the R-sig-mixed-models
mailing list