[R-sig-ME] Error: In mer_finalize(ans) : false convergence (8)
ONKELINX, Thierry
Thierry.ONKELINX at inbo.be
Fri Jul 26 10:16:03 CEST 2013
Dear Sarah,
Have TMT1 both in the fixed effects and nested in block as a random effect seems a strange to me. This might be the problem for the convergence.
1) What is the rationale for include TMT1 both in the fixed as the random effects?
2) Do you get convergence with
Mod1 <- lmer(log(Y) ~ TMT1 * TMT2 * Year + (1|Block) + (1|Year), data = lmerdat, verbose = TRUE)
Mod2 <- lmer(log(Y) ~ TMT2 * Year + (1|Block/TMT1) + (1|Year), data = lmerdat, verbose = TRUE)
Andpleaseaddsomewhitespacetoyourcode
Best regards,
Thierry
ir. Thierry Onkelinx
Instituut voor natuur- en bosonderzoek / Research Institute for Nature and Forest
team Biometrie & Kwaliteitszorg / team Biometrics & Quality Assurance
Kliniekstraat 25
1070 Anderlecht
Belgium
+ 32 2 525 02 51
+ 32 54 43 61 85
Thierry.Onkelinx op inbo.be
www.inbo.be
To call in the statistician after the experiment is done may be no more than asking him to perform a post-mortem examination: he may be able to say what the experiment died of.
~ Sir Ronald Aylmer Fisher
The plural of anecdote is not data.
~ Roger Brinner
The combination of some data and an aching desire for an answer does not ensure that a reasonable answer can be extracted from a given body of data.
~ John Tukey
-----Oorspronkelijk bericht-----
Van: r-sig-mixed-models-bounces op r-project.org [mailto:r-sig-mixed-models-bounces op r-project.org] Namens Sarah Dryhurst
Verzonden: donderdag 25 juli 2013 19:51
Aan: r-sig-mixed-models op r-project.org
Onderwerp: [R-sig-ME] Error: In mer_finalize(ans) : false convergence (8)
Hello all,
I am running an mixed effects model on the attached data. I initially used the following code
mod1<- lmer(log(Y)~TMT1*TMT2*Year+(1|Block/TMT1)+(1|Year),data=lmerdat,verbose=TRUE)
Which gives me the following:
0: 77.714051: 0.666667 0.471405 0.333333
1: 74.110931: 0.842664 1.45578 0.328587
2: 72.264680: 0.440773 1.34787 0.215307
3: 72.215476: 0.405289 1.27443 0.208252
4: 72.206023: 0.430340 1.25642 0.208492
5: 72.203289: 0.423498 1.22704 0.214935
6: 72.202721: 0.422680 1.22886 0.209101
7: 72.202679: 0.424822 1.23459 0.208315
8: 72.202679: 0.424822 1.23459 0.208315
9: 72.202679: 0.424822 1.23459 0.208315
Warning message:
In mer_finalize(ans) : false convergence (8)
I thought that I might have too many parameters, so I removed the three way interaction thus:
mod1<- lmer(logY)~TMT1+TMT2+Year+TMT1:TMT2+TMT1:Year+TMT2:Year+(1|Block/TMT1)+(1|Year),data=lmerdat,verbose=TRUE)
0: 82.176953: 0.666667 0.471405 0.333333
1: 80.060839: 0.932569 1.42347 0.182093
2: 79.408200: 0.00000 1.72496 0.180290
3: 78.436511: 0.00107482 1.31540 0.182908
4: 78.313534: 0.00586792 1.19163 0.169823
5: 78.292542: 0.0255058 1.16060 0.176287
6: 78.204264: 0.195335 0.918497 0.214946
7: 77.959243: 0.166960 1.02200 0.173634
8: 77.325791: 0.416075 1.15366 0.271404
9: 77.240857: 0.377681 1.16245 0.202179
10: 77.237968: 0.381277 1.16539 0.190858
11: 77.237719: 0.380920 1.16760 0.187107
12: 77.237718: 0.379746 1.17007 0.187519
13: 77.237695: 0.381074 1.16994 0.187148
14: 77.237695: 0.380772 1.16969 0.187087
15: 77.237695: 0.380778 1.16974 0.187092
16: 77.237695: 0.380806 1.16978 0.187098
17: 77.237695: 0.380906 1.16978 0.187107
18: 77.237695: 0.380999 1.16975 0.187128
19: 77.237695: 0.380982 1.16965 0.187105
20: 77.237695: 0.380961 1.16967 0.187112
21: 77.237695: 0.380961 1.16967 0.187112
Warning message:
In mer_finalize(ans) : false convergence (8)
>
So the model seemed to get a bit further but still will not converge... I don't want to remove anything else as my model will then not invetsigate the relationships I want it to and I don't think it is overparameterised without that 3 way interaction...
If i multiply Y by 10 it gets a bit further again but still stalls:
> mod1<-
> lmer(log(I(10*Y))~TMT1+TMT2+Year+TMT1:TMT2+TMT1:Year+TMT2:Year+(1|Bloc
> k/TMT1)+(1|Year),data=lmerdat,verbose=TRUE)
0: 82.176953: 0.666667 0.471405 0.333333
1: 80.059473: 0.932336 1.42350 0.181868
2: 79.407034: 0.00000 1.72457 0.181162
3: 78.529865: 0.00000 1.30356 0.0708756
4: 78.320758: 0.000702149 1.19618 0.193718
5: 78.308420: 0.00287500 1.16437 0.161311
6: 78.298595: 0.0199600 1.14541 0.174745
7: 78.198050: 0.0954940 1.07394 0.224686
8: 78.095409: 0.159180 1.01562 0.265286
9: 77.628631: 0.238546 1.05911 0.235037
10: 77.251998: 0.395868 1.12462 0.185342
11: 77.239703: 0.373209 1.15530 0.187029
12: 77.238348: 0.378481 1.15960 0.186789
13: 77.237962: 0.380487 1.16277 0.186797
14: 77.237766: 0.380997 1.16609 0.186947
15: 77.237720: 0.380749 1.16757 0.187021
16: 77.237698: 0.381015 1.16893 0.187108
17: 77.237697: 0.380978 1.16905 0.187112
18: 77.237696: 0.380954 1.16929 0.187109
19: 77.237696: 0.381002 1.16935 0.187111
20: 77.237695: 0.381017 1.16942 0.187070
21: 77.237695: 0.380947 1.16958 0.187109
22: 77.237695: 0.380947 1.16976 0.187103
23: 77.237695: 0.380948 1.16975 0.187105
24: 77.237695: 0.380948 1.16975 0.187105
25: 77.237695: 0.380948 1.16975 0.187105
26: 77.237695: 0.380948 1.16975 0.187105
Warning message:
In mer_finalize(ans) : false convergence (8)
Is there a solution to this? Can I trust the model outputs that I am getting in spite of this convergence issue? I can't use the suggested resolution of dividing or multiplying explanatory variables by
10/100/1000 etc as these variables are categorical....
Sorry to post another question about this - I just can't find an answer that fits my data.
Any thoughts would be much appreciated
Best wishes,
Sarah
--
NERC PhD Student
Community Ecology and Global Change
Department of Biology
Imperial College, London
email: sarah.dryhurst08 op imperial.ac.uk
* * * * * * * * * * * * * D I S C L A I M E R * * * * * * * * * * * * *
Dit bericht en eventuele bijlagen geven enkel de visie van de schrijver weer en binden het INBO onder geen enkel beding, zolang dit bericht niet bevestigd is door een geldig ondertekend document.
The views expressed in this message and any annex are purely those of the writer and may not be regarded as stating an official position of INBO, as long as the message is not confirmed by a duly signed document.
More information about the R-sig-mixed-models
mailing list