[R-sig-ME] MCMCglmm and contrast
m.fenati at libero.it
m.fenati at libero.it
Thu Sep 22 20:02:32 CEST 2011
Dear R users,
I would like to have a suggestion about MCMCglmm and contr.sdif.
I want to test the difference between two succesive level of a categorical
variable (data_cat) in a multivariate model.
I fit the model as follows:
contrasts(cimu$data_cat)=contr.sdif
prior<-list(R=list(V=1,fix=1),G=list(G1=list(V=1,nu=0.002)),B=list(mu=c(rep
(0,11)),V=diag(11)*(3+pi^2/3)))
m.1<-MCMCglmm(edv_tot~age+sex+data_cat,slice=T,prior=prior,random=~ID_an,
data=cimu,nitt=900000,thin=100,burnin=300000,family="categorical",
verbose=FALSE)
summary(m.1)
Sample size = 6000
DIC: 35.83431
G-structure: ~ID_an
post.mean l-95% CI u-95% CI eff.samp
ID_an 3.214 0.0002216 13.79 520.3
R-structure: ~units
post.mean l-95% CI u-95% CI eff.samp
units 1 1 1 0
Location effects: edv_tot ~ age + sex + data_cat
post.mean l-95% CI u-95% CI eff.samp pMCMC
(Intercept) -0.9443 -3.3426 1.4717 4861 0.4360
age1 -2.2578 -6.2168 1.4007 5584 0.2390
age2 2.2226 -0.6441 5.3706 5628 0.1270
age3 0.5132 -2.4640 3.7798 4989 0.7343
age4 0.5891 -2.8786 4.0271 6000 0.7270
age5 -0.3487 -3.1947 2.4558 5610 0.8213
age6 -0.3023 -3.3455 2.7215 5834 0.8553
sexM -0.7528 -3.0999 1.6399 5588 0.5220
data_cat2-1 2.3829 -0.5235 5.5751 4317 0.1220
data_cat3-2 -3.3894 -6.3156 -0.1769 6000 0.0323 *
data_cat4-3 -4.6328 -7.8367 -1.6581 4217 0.0020 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
I aspect to obtain for "data_cat2-1" the same coefficient that I obtain if I
use contr.treatment , but it is not the case (see the following example)
contrasts(cimu$data_cat)=contr.treatment
prior<-list(R=list(V=1,fix=1),G=list(G1=list(V=1,nu=0.002)),B=list(mu=c(rep
(0,11)),V=diag(11)*(3+pi^2/3)))
m.1<-MCMCglmm(edv_tot~age+sex+data_cat,slice=T,prior=prior,random=~ID_an,
data=cimu,nitt=900000,thin=100,burnin=300000,family="categorical",
verbose=FALSE)
Iterations = 300001:899901
Thinning interval = 100
Sample size = 6000
DIC: 34.31511
G-structure: ~ID_an
post.mean l-95% CI u-95% CI eff.samp
ID_an 2.134 0.0002254 10.21 905.5
R-structure: ~units
post.mean l-95% CI u-95% CI eff.samp
units 1 1 1 0
Location effects: edv_tot ~ age + sex + data_cat
post.mean l-95% CI u-95% CI eff.samp pMCMC
(Intercept) -0.6479 -3.2589 1.9114 6000 0.624333
age1 -1.9388 -5.6190 1.9704 5216 0.314000
age2 2.2851 -0.7129 5.2292 5347 0.131667
age3 0.5602 -2.8026 3.4921 6000 0.710000
age4 0.5284 -2.9907 3.9128 6000 0.756667
age5 0.0143 -2.5979 2.7103 5635 0.969000
age6 -0.3660 -3.6664 2.7862 6000 0.847333
sexM -0.6188 -2.8901 1.6339 6000 0.582667
data_cat2 3.9755 0.6346 7.4141 6000 0.016000 *
data_cat3 -0.1361 -2.5624 2.4428 5570 0.894667
data_cat4 -4.8936 -7.8206 -1.9578 5026 0.000333 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Can someone help me?
Thank you in advance
Massimo
More information about the R-sig-mixed-models
mailing list