[R-sig-ME] level 1 variance-covariance structure

ONKELINX, Thierry Thierry.ONKELINX at inbo.be
Wed Apr 13 10:29:38 CEST 2011


There is no auto-correlation left AFTER the fixed and random effects are taken into account. So you probably will have to choose between the models below.

m3a <- lme(attit ~ age13 , data, random= ~ 0 + factor(age13)| id)
m3b <- lme(attit ~ age13 , data, random= ~ 1| id, correlation = corAR1(form =  ~ age13 | id))

----------------------------------------------------------------------------
ir. Thierry Onkelinx
Instituut voor natuur- en bosonderzoek
team Biometrie & Kwaliteitszorg
Gaverstraat 4
9500 Geraardsbergen
Belgium

Research Institute for Nature and Forest
team Biometrics & Quality Assurance
Gaverstraat 4
9500 Geraardsbergen
Belgium

tel. + 32 54/436 185
Thierry.Onkelinx at inbo.be
www.inbo.be

To call in the statistician after the experiment is done may be no more than asking him to perform a post-mortem examination: he may be able to say what the experiment died of.
~ Sir Ronald Aylmer Fisher

The plural of anecdote is not data.
~ Roger Brinner

The combination of some data and an aching desire for an answer does not ensure that a reasonable answer can be extracted from a given body of data.
~ John Tukey
  

> -----Oorspronkelijk bericht-----
> Van: r-sig-mixed-models-bounces at r-project.org 
> [mailto:r-sig-mixed-models-bounces at r-project.org] Namens 
> Sebastián Daza
> Verzonden: dinsdag 12 april 2011 22:47
> Aan: R-SIG-Mixed-Models at r-project.org
> Onderwerp: Re: [R-sig-ME] level 1 variance-covariance structure
> 
> Thierry,
> I can run this model... but what does it mean?
> The correlation structure that I get is:
> 
> Correlation Structure: ARMA(1,0)
>   Formula: ~age13 | id
>   Parameter estimate(s):
> Phi1
>     0
> 
> What does zero mean? I would expect get some positive number there...
> 
>   m3a <- lme(attit ~ 1 +  age13 , data, random= ~ 0 + 
> factor(age13)| id, correlation = corAR1(form =  ~ age13 | id))
> > summary(m3a)
> Linear mixed-effects model fit by REML
>   Data: data
>          AIC       BIC   logLik
>    -324.2096 -229.5528 181.1048
> 
> Random effects:
>   Formula: ~0 + factor(age13) | id
>   Structure: General positive-definite, Log-Cholesky parametrization
>                  StdDev     Corr
> factor(age13)-2 0.17219431 f(13)-2 f(13)-1 f(13)0 f(13)1
> factor(age13)-1 0.19789254 0.493
> factor(age13)0  0.25942941 0.425   0.544
> factor(age13)1  0.28354459 0.442   0.442   0.723
> factor(age13)2  0.29097081 0.498   0.474   0.639  0.808
> Residual        0.07457025
> 
> Correlation Structure: ARMA(1,0)
>   Formula: ~age13 | id
>   Parameter estimate(s):
> Phi1
>     0
> Fixed effects: attit ~ 1 + age13
>                  Value   Std.Error  DF  t-value p-value
> (Intercept) 0.3210558 0.012832840 839 25.01829       0
> age13       0.0593529 0.004716984 839 12.58282       0
>   Correlation:
>        (Intr)
> age13 0.504
> 
> Standardized Within-Group Residuals:
>          Min          Q1         Med          Q3         Max
> -1.46371874 -0.27170442 -0.04080688  0.26239551  1.69883907
> 
> Number of Observations: 1079
> Number of Groups: 239
> 
> On 4/12/2011 10:21 AM, ONKELINX, Thierry wrote:
> > Dear Sebastian,
> >
> > The model below works fine on my computer.
> >
> > m3a<- lme(attit ~ 1 +  age13 , data=dataset, random= ~ 
> > 0+factor(age13)| id, correlation = corAR1(form =  ~ age13 | id))
> >
> >
> > Best regards,
> >
> > Thierry
> > 
> ----------------------------------------------------------------------
> > ------
> > ir. Thierry Onkelinx
> > Instituut voor natuur- en bosonderzoek team Biometrie&  
> Kwaliteitszorg 
> > Gaverstraat 4 9500 Geraardsbergen Belgium
> >
> > Research Institute for Nature and Forest team Biometrics&  Quality 
> > Assurance Gaverstraat 4 9500 Geraardsbergen Belgium
> >
> > tel. + 32 54/436 185
> > Thierry.Onkelinx at inbo.be
> > www.inbo.be
> >
> > To call in the statistician after the experiment is done 
> may be no more than asking him to perform a post-mortem 
> examination: he may be able to say what the experiment died of.
> > ~ Sir Ronald Aylmer Fisher
> >
> > The plural of anecdote is not data.
> > ~ Roger Brinner
> >
> > The combination of some data and an aching desire for an 
> answer does not ensure that a reasonable answer can be 
> extracted from a given body of data.
> > ~ John Tukey
> >
> >
> >> -----Oorspronkelijk bericht-----
> >> Van: Sebastián Daza [mailto:sebastian.daza at gmail.com]
> >> Verzonden: dinsdag 12 april 2011 15:43
> >> Aan: ONKELINX, Thierry
> >> CC: R-SIG-Mixed-Models at r-project.org
> >> Onderwerp: Re: [R-sig-ME] level 1 variance-covariance structure
> >>
> >> Thank you for your reply Thierry...
> >> Increasing the number of iterations doesn't work:
> >>
> >> m3a<- lme(attit ~ 1 +  age13 , data=data, random= ~ age13  | id, 
> >> correlation = corAR1(, form =  ~ ind | id), 
> >> control=list(maxIter=1000, msMaxIter=1000, niterEM=1000))
> >>
> >> Error in lme.formula(attit ~ 1 + age13, data = data, random =
> >> ~age13 |  :
> >>     nlminb problem, convergence error code = 1
> >>     message = function evaluation limit reached without 
> convergence 
> >> (9)
> >>
> >> I have attached my database. I don't know if it is a problem of my 
> >> model or a limitation of lme function.
> >>
> >> The best!
> >> Sebastian.
> >>
> >> On 4/12/2011 6:25 AM, ONKELINX, Thierry wrote:
> >>> Dear Sebastian,
> >>>
> >>> You don't need to create dummy variables your selve.
> >>>
> >>> You can write m2a<- lme(attit ~ 1 +  age13 , data=data,
> >> random= ~ 0 + ind1+ ind2+ ind3+ ind4+ ind5 | id, method="REML") as
> >>>
> >>> m2a<- lme(attit ~ 1 +  age13 , data=data, random= ~ 0 +
> >> factor(ind) | id, method="REML")
> >>>
> >>> Or if ind is an indicator for age13:
> >>>
> >>> m2a<- lme(attit ~ 1 +  age13 , data=data, random= ~ 0 +
> >> factor(age13) | id, method="REML")
> >>>
> >>> Have a look at lmeControl() to increase the number of iterations.
> >>>
> >>> Best regards,
> >>>
> >>> Thierry
> >>>
> >>>
> >> --------------------------------------------------------------
> >> --------------
> >>> ir. Thierry Onkelinx
> >>> Instituut voor natuur- en bosonderzoek
> >>> team Biometrie&   Kwaliteitszorg
> >>> Gaverstraat 4
> >>> 9500 Geraardsbergen
> >>> Belgium
> >>>
> >>> Research Institute for Nature and Forest
> >>> team Biometrics&   Quality Assurance
> >>> Gaverstraat 4
> >>> 9500 Geraardsbergen
> >>> Belgium
> >>>
> >>> tel. + 32 54/436 185
> >>> Thierry.Onkelinx at inbo.be
> >>> www.inbo.be
> >>>
> >>> To call in the statistician after the experiment is done
> >> may be no more than asking him to perform a post-mortem
> >> examination: he may be able to say what the experiment died of.
> >>> ~ Sir Ronald Aylmer Fisher
> >>>
> >>> The plural of anecdote is not data.
> >>> ~ Roger Brinner
> >>>
> >>> The combination of some data and an aching desire for an
> >> answer does not ensure that a reasonable answer can be 
> extracted from 
> >> a given body of data.
> >>> ~ John Tukey
> >>>
> >>>
> >>>> -----Oorspronkelijk bericht-----
> >>>> Van: r-sig-mixed-models-bounces at r-project.org
> >>>> [mailto:r-sig-mixed-models-bounces at r-project.org] Namens 
> Sebastián 
> >>>> Daza
> >>>> Verzonden: maandag 11 april 2011 18:44
> >>>> Aan: R-SIG-Mixed-Models at r-project.org
> >>>> Onderwerp: [R-sig-ME] level 1 variance-covariance structure
> >>>>
> >>>> Hi everyone,
> >>>> I am trying to reproduce some results models from HLM (HMLM) to 
> >>>> contrast different specifications of level 1 
> variance-covariance, 
> >>>> but I get convergence errors. I would like to know if 
> there are any 
> >>>> problems with my model
> >> specification...
> >>>>
> >>>>
> >>>> # database structure
> >>>>
> >>>> head(data[,c(1,2,6, 9:13,17)])
> >>>>            id attit age13 ind1 ind2 ind3 ind4 ind5 ind
> >>>> 1        3  0.11    -2    1    0    0    0    0   1
> >>>> 2        3  0.20    -1    0    1    0    0    0   2
> >>>> 3        3  0.00     0    0    0    1    0    0   3
> >>>> 4        3  0.00     1    0    0    0    1    0   4
> >>>> 5        3  0.11     2    0    0    0    0    1   5
> >>>> 6        8  0.29    -2    1    0    0    0    0   1
> >>>>
> >>>> # attit is a deviant measure and ind variables indicate 
> different 
> >>>> waves # following some examples of snijders and bosker's book, I 
> >>>> get the unrestricted model:
> >>>>
> >>>>    >   m2a<- lme(attit ~ 1 +  age13 , data=data, random= ~ 0 +
> >>>> ind1+ ind2+
> >>>> ind3+ ind4+ ind5 | id, method="REML")
> >>>>
> >>>>    >   summary(m2a)
> >>>> Linear mixed-effects model fit by REML
> >>>>     Data: data
> >>>>            AIC       BIC   logLik
> >>>>      -326.2096 -236.5348 181.1048
> >>>>
> >>>> Random effects:
> >>>>     Formula: ~0 + ind1 + ind2 + ind3 + ind4 + ind5 | id
> >>>>     Structure: General positive-definite, Log-Cholesky
> >> parametrization
> >>>>             StdDev     Corr
> >>>> ind1     0.17219431 ind1  ind2  ind3  ind4
> >>>> ind2     0.19789253 0.493
> >>>> ind3     0.25942942 0.425 0.544
> >>>> ind4     0.28354459 0.442 0.442 0.723
> >>>> ind5     0.29097082 0.498 0.474 0.639 0.808
> >>>> Residual 0.07457025
> >>>>
> >>>> Fixed effects: attit ~ 1 + age13
> >>>>                    Value   Std.Error  DF  t-value p-value
> >>>> (Intercept) 0.3210558 0.012832840 839 25.01829       0
> >>>> age13       0.0593529 0.004716984 839 12.58282       0
> >>>>     Correlation:
> >>>>          (Intr)
> >>>> age13 0.504
> >>>>
> >>>> Standardized Within-Group Residuals:
> >>>>            Min          Q1         Med          Q3         Max
> >>>> -1.46371871 -0.27170442 -0.04080686  0.26239553  1.69883910
> >>>>
> >>>> Number of Observations: 1079
> >>>> Number of Groups: 239
> >>>>
> >>>> # variance-covariance matrix
> >>>>
> >>>>    >   extract.lme.cov2(m2a,data)$V[[6]]
> >>>>               25         26         27         28         29
> >>>> 25 0.03521160 0.01681647 0.01899029 0.02159300 0.02494013
> >>>> 26 0.01681647 0.04472218 0.02793174 0.02481343 0.02727012
> >>>> 27 0.01899029 0.02793174 0.07286434 0.05318967 0.04823107
> >>>> 28 0.02159300 0.02481343 0.05318967 0.08595826 0.06667139
> >>>> 29 0.02494013 0.02727012 0.04823107 0.06667139 0.09022474
> >>>>
> >>>> # I get the same results than unrestricted model in HLM
> >>>>
> >>>> # When I try to get the same unrestricted model using "corStruc"
> >>>> commands in lme, I get a convergence problem. Am I 
> reproducing the 
> >>>> model m2a?
> >>>>
> >>>>    >   m2b<- lme(attit ~ 1 +  age13 , data=data, random= ~ age13
> >>>> | id, correlation = corSymm(, form =  ~ ind | id)) Error in
> >>>> lme.formula(attit ~ 1 + age13, data = data, random = ~age13 |  :
> >>>>      nlminb problem, convergence error code = 1
> >>>>      message = iteration limit reached without convergence (9)
> >>>>
> >>>> # When I try to get an autoregressive model,  I get again a 
> >>>> convergence problem.
> >>>>
> >>>>    >   m3a<- lme(attit ~ 1 +  age13 , data=data, random= ~ age13
> >>>> | id, correlation = corAR1(, form =  ~ ind | id)) Error in
> >>>> lme.formula(attit ~ 1 + age13, data = data, random = ~age13 |  :
> >>>>      nlminb problem, convergence error code = 1
> >>>>      message = iteration limit reached without convergence (9)
> >>>>
> >>>> Does anyone know how I can solve this?
> >>>> Thank you in advance.
> >>>>
> >>>> --
> >>>> Sebastián Daza
> >>>> sebastian.daza at gmail.com
> >>>>
> >>>> _______________________________________________
> >>>> R-sig-mixed-models at r-project.org mailing list 
> >>>> https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models
> >>>>
> >>
> >> --
> >> Sebastián Daza
> >> sebastian.daza at gmail.com
> >>
> 
> --
> Sebastián Daza
> sebastian.daza at gmail.com
> 
> _______________________________________________
> R-sig-mixed-models at r-project.org mailing list 
> https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models
> 



More information about the R-sig-mixed-models mailing list