[R-sig-ME] level 1 variance-covariance structure
ONKELINX, Thierry
Thierry.ONKELINX at inbo.be
Tue Apr 12 17:21:24 CEST 2011
Dear Sebastian,
The model below works fine on my computer.
m3a <- lme(attit ~ 1 + age13 , data=dataset, random= ~ 0+factor(age13)| id, correlation = corAR1(form = ~ age13 | id))
Best regards,
Thierry
----------------------------------------------------------------------------
ir. Thierry Onkelinx
Instituut voor natuur- en bosonderzoek
team Biometrie & Kwaliteitszorg
Gaverstraat 4
9500 Geraardsbergen
Belgium
Research Institute for Nature and Forest
team Biometrics & Quality Assurance
Gaverstraat 4
9500 Geraardsbergen
Belgium
tel. + 32 54/436 185
Thierry.Onkelinx at inbo.be
www.inbo.be
To call in the statistician after the experiment is done may be no more than asking him to perform a post-mortem examination: he may be able to say what the experiment died of.
~ Sir Ronald Aylmer Fisher
The plural of anecdote is not data.
~ Roger Brinner
The combination of some data and an aching desire for an answer does not ensure that a reasonable answer can be extracted from a given body of data.
~ John Tukey
> -----Oorspronkelijk bericht-----
> Van: Sebastián Daza [mailto:sebastian.daza at gmail.com]
> Verzonden: dinsdag 12 april 2011 15:43
> Aan: ONKELINX, Thierry
> CC: R-SIG-Mixed-Models at r-project.org
> Onderwerp: Re: [R-sig-ME] level 1 variance-covariance structure
>
> Thank you for your reply Thierry...
> Increasing the number of iterations doesn't work:
>
> m3a <- lme(attit ~ 1 + age13 , data=data, random= ~ age13 | id,
> correlation = corAR1(, form = ~ ind | id),
> control=list(maxIter=1000,
> msMaxIter=1000, niterEM=1000))
>
> Error in lme.formula(attit ~ 1 + age13, data = data, random =
> ~age13 | :
> nlminb problem, convergence error code = 1
> message = function evaluation limit reached without convergence (9)
>
> I have attached my database. I don't know if it is a problem
> of my model
> or a limitation of lme function.
>
> The best!
> Sebastian.
>
> On 4/12/2011 6:25 AM, ONKELINX, Thierry wrote:
> > Dear Sebastian,
> >
> > You don't need to create dummy variables your selve.
> >
> > You can write m2a<- lme(attit ~ 1 + age13 , data=data,
> random= ~ 0 + ind1+ ind2+ ind3+ ind4+ ind5 | id, method="REML") as
> >
> > m2a<- lme(attit ~ 1 + age13 , data=data, random= ~ 0 +
> factor(ind) | id, method="REML")
> >
> > Or if ind is an indicator for age13:
> >
> > m2a<- lme(attit ~ 1 + age13 , data=data, random= ~ 0 +
> factor(age13) | id, method="REML")
> >
> > Have a look at lmeControl() to increase the number of iterations.
> >
> > Best regards,
> >
> > Thierry
> >
> >
> --------------------------------------------------------------
> --------------
> > ir. Thierry Onkelinx
> > Instituut voor natuur- en bosonderzoek
> > team Biometrie& Kwaliteitszorg
> > Gaverstraat 4
> > 9500 Geraardsbergen
> > Belgium
> >
> > Research Institute for Nature and Forest
> > team Biometrics& Quality Assurance
> > Gaverstraat 4
> > 9500 Geraardsbergen
> > Belgium
> >
> > tel. + 32 54/436 185
> > Thierry.Onkelinx at inbo.be
> > www.inbo.be
> >
> > To call in the statistician after the experiment is done
> may be no more than asking him to perform a post-mortem
> examination: he may be able to say what the experiment died of.
> > ~ Sir Ronald Aylmer Fisher
> >
> > The plural of anecdote is not data.
> > ~ Roger Brinner
> >
> > The combination of some data and an aching desire for an
> answer does not ensure that a reasonable answer can be
> extracted from a given body of data.
> > ~ John Tukey
> >
> >
> >> -----Oorspronkelijk bericht-----
> >> Van: r-sig-mixed-models-bounces at r-project.org
> >> [mailto:r-sig-mixed-models-bounces at r-project.org] Namens
> >> Sebastián Daza
> >> Verzonden: maandag 11 april 2011 18:44
> >> Aan: R-SIG-Mixed-Models at r-project.org
> >> Onderwerp: [R-sig-ME] level 1 variance-covariance structure
> >>
> >> Hi everyone,
> >> I am trying to reproduce some results models from HLM (HMLM)
> >> to contrast different specifications of level 1
> >> variance-covariance, but I get convergence errors. I would
> >> like to know if there are any problems with my model
> specification...
> >>
> >>
> >> # database structure
> >>
> >> head(data[,c(1,2,6, 9:13,17)])
> >> id attit age13 ind1 ind2 ind3 ind4 ind5 ind
> >> 1 3 0.11 -2 1 0 0 0 0 1
> >> 2 3 0.20 -1 0 1 0 0 0 2
> >> 3 3 0.00 0 0 0 1 0 0 3
> >> 4 3 0.00 1 0 0 0 1 0 4
> >> 5 3 0.11 2 0 0 0 0 1 5
> >> 6 8 0.29 -2 1 0 0 0 0 1
> >>
> >> # attit is a deviant measure and ind variables indicate
> >> different waves # following some examples of snijders and
> >> bosker's book, I get the unrestricted model:
> >>
> >> > m2a<- lme(attit ~ 1 + age13 , data=data, random= ~ 0 +
> >> ind1+ ind2+
> >> ind3+ ind4+ ind5 | id, method="REML")
> >>
> >> > summary(m2a)
> >> Linear mixed-effects model fit by REML
> >> Data: data
> >> AIC BIC logLik
> >> -326.2096 -236.5348 181.1048
> >>
> >> Random effects:
> >> Formula: ~0 + ind1 + ind2 + ind3 + ind4 + ind5 | id
> >> Structure: General positive-definite, Log-Cholesky
> parametrization
> >> StdDev Corr
> >> ind1 0.17219431 ind1 ind2 ind3 ind4
> >> ind2 0.19789253 0.493
> >> ind3 0.25942942 0.425 0.544
> >> ind4 0.28354459 0.442 0.442 0.723
> >> ind5 0.29097082 0.498 0.474 0.639 0.808
> >> Residual 0.07457025
> >>
> >> Fixed effects: attit ~ 1 + age13
> >> Value Std.Error DF t-value p-value
> >> (Intercept) 0.3210558 0.012832840 839 25.01829 0
> >> age13 0.0593529 0.004716984 839 12.58282 0
> >> Correlation:
> >> (Intr)
> >> age13 0.504
> >>
> >> Standardized Within-Group Residuals:
> >> Min Q1 Med Q3 Max
> >> -1.46371871 -0.27170442 -0.04080686 0.26239553 1.69883910
> >>
> >> Number of Observations: 1079
> >> Number of Groups: 239
> >>
> >> # variance-covariance matrix
> >>
> >> > extract.lme.cov2(m2a,data)$V[[6]]
> >> 25 26 27 28 29
> >> 25 0.03521160 0.01681647 0.01899029 0.02159300 0.02494013
> >> 26 0.01681647 0.04472218 0.02793174 0.02481343 0.02727012
> >> 27 0.01899029 0.02793174 0.07286434 0.05318967 0.04823107
> >> 28 0.02159300 0.02481343 0.05318967 0.08595826 0.06667139
> >> 29 0.02494013 0.02727012 0.04823107 0.06667139 0.09022474
> >>
> >> # I get the same results than unrestricted model in HLM
> >>
> >> # When I try to get the same unrestricted model using "corStruc"
> >> commands in lme, I get a convergence problem. Am I
> >> reproducing the model m2a?
> >>
> >> > m2b<- lme(attit ~ 1 + age13 , data=data, random= ~ age13
> >> | id, correlation = corSymm(, form = ~ ind | id)) Error in
> >> lme.formula(attit ~ 1 + age13, data = data, random = ~age13 | :
> >> nlminb problem, convergence error code = 1
> >> message = iteration limit reached without convergence (9)
> >>
> >> # When I try to get an autoregressive model, I get again a
> >> convergence problem.
> >>
> >> > m3a<- lme(attit ~ 1 + age13 , data=data, random= ~ age13
> >> | id, correlation = corAR1(, form = ~ ind | id)) Error in
> >> lme.formula(attit ~ 1 + age13, data = data, random = ~age13 | :
> >> nlminb problem, convergence error code = 1
> >> message = iteration limit reached without convergence (9)
> >>
> >> Does anyone know how I can solve this?
> >> Thank you in advance.
> >>
> >> --
> >> Sebastián Daza
> >> sebastian.daza at gmail.com
> >>
> >> _______________________________________________
> >> R-sig-mixed-models at r-project.org mailing list
> >> https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models
> >>
>
> --
> Sebastián Daza
> sebastian.daza at gmail.com
>
More information about the R-sig-mixed-models
mailing list