[R-sig-ME] nlme for exact binomial model

ONKELINX, Thierry Thierry.ONKELINX at inbo.be
Fri Apr 1 16:14:02 CEST 2011


Have a look at the glmer() from the lme4 package. That can fit glmm models.

Best regards,

Thierry

----------------------------------------------------------------------------
ir. Thierry Onkelinx
Instituut voor natuur- en bosonderzoek
team Biometrie & Kwaliteitszorg
Gaverstraat 4
9500 Geraardsbergen
Belgium

Research Institute for Nature and Forest
team Biometrics & Quality Assurance
Gaverstraat 4
9500 Geraardsbergen
Belgium

tel. + 32 54/436 185
Thierry.Onkelinx at inbo.be
www.inbo.be

To call in the statistician after the experiment is done may be no more than asking him to perform a post-mortem examination: he may be able to say what the experiment died of.
~ Sir Ronald Aylmer Fisher

The plural of anecdote is not data.
~ Roger Brinner

The combination of some data and an aching desire for an answer does not ensure that a reasonable answer can be extracted from a given body of data.
~ John Tukey
  

> -----Oorspronkelijk bericht-----
> Van: r-sig-mixed-models-bounces at r-project.org 
> [mailto:r-sig-mixed-models-bounces at r-project.org] Namens 
> Nonyane, Bareng A.S.
> Verzonden: vrijdag 1 april 2011 16:09
> Aan: r-sig-mixed-models at r-project.org
> Onderwerp: [R-sig-ME] nlme for exact binomial model
> 
> Hi
> I am conducting a meta-analysis on proportions and I'm 
> interested in using the exact binomial likeliood for the 
> within-study effects rather than the approximate approaches  
> and I don't want to use the quasi-likelihood approach in R's glmmPQL.
> Does anyone know how I can do this using nlme? I can do it in 
> SAS nlmixed but  I would rather use R -this is my SAS code:
> 
> proc nlmixed data=work.temp   ;
> parms  mup=2 vp= 08;  /*initial values*/ 
> rawprop=1/(1+exp(-truep)); /*unkown true p logit proportion*/ 
> model  numberofisolates~binomial(sumisolatestudy, rawprop) ; 
> random truep~normal(mup,vp) subject=studyid; run;
> 
> Thanks
> 
> 
> B. Aletta Nonyane, PhD
> Assistant Scientist
> Department of International Health
> Johns Hopkins Bloomberg School of Public Health
> 615 N. Wolfe Street
> Baltimore, MD, 21205
> 
> 
> 	[[alternative HTML version deleted]]
> 
> _______________________________________________
> R-sig-mixed-models at r-project.org mailing list 
> https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models
> 



More information about the R-sig-mixed-models mailing list