[R-sig-ME] Problems with arm examples scripts

Murray Jorgensen maj at stats.waikato.ac.nz
Thu Jan 13 04:55:58 CET 2011



I am currently running some arm scripts for some of the data sets in the 
book by Andrew Gelman and Jennifer Hill. (2006). (Data Analysis Using 
Regression and Multilevel/Hierarchical Models. Cambridge University Press.)

I asked a question on the R-sig-ME list and Dennis Murphy suggested
a) that I update my R to the latest version and
b) that I contact the maintainer of the arm package.

I have been mostly using a Dell laptop running Windows XP. Previously I 
had been using R 2.11.1 but with packages at 2.10.1. Now I have brought 
R and the packages both up to 2.12.1 but I have come across another 
problem which may be an lmer problem so I am sending this email to both 
R-sig-ME and Yu-Sung Su, the arm maintainer.

Here is one problem. Firstly I will give my script (which you will need 
to modify to point to the location of the data file on you machine.)

library(arm)
# earnings_setup.R
he = "C:\\Files\\R&Splus\\Gelman\\examples\\earnings\\"
#library ("foreign") - arm loads this!
heights <- read.dta (paste(he,"heights.dta", sep = ""))
attach.all(heights)
age <- 90 - yearbn                     # survey was conducted in 1990
age[age<18] <- NA
age.category <- ifelse (age<35, 1, ifelse (age<50, 2, 3))
eth <- ifelse (race==2, 1, ifelse (hisp==1, 2, ifelse (race==1, 3, 4)))
male <- 2 - sex
ok <- !is.na (earn+height+sex+age) & earn>0 & yearbn>2
heights.clean <- as.data.frame (cbind (earn, height, sex, race, hisp, 
ed, age, age.category, eth, male)[ok,])
n <- nrow (heights.clean)
# earnings_chap12.R
attach.all (heights.clean0)
# presume heights.clean intended
attach.all (heights.clean)
y <- log(earn)
x <- height
n <- length(y)
n.age <- 3
n.eth <- 4
age <- age.category
# regression of log (earnings) on height, age, and ethnicity
M1 <- lmer (y ~ x + (1 + x | eth))
display (M1)
M1 <- lmer (y ~ x + (1 + x | eth), verbose = TRUE)


(I have attached the heights.clean data as a text file to make this 
example more self-contained)

In the latest version 2.12.1 lmer flags a convergence failure:

 > M1 <- lmer (y ~ x + (1 + x | eth))
Warning message:
In mer_finalize(ans) : false convergence (8)
 > display (M1)
lmer(formula = y ~ x + (1 + x | eth))
             coef.est coef.se
(Intercept) 5.77     0.45
x           0.06     0.01

Error terms:
  Groups   Name        Std.Dev. Corr
  eth      (Intercept) 0.00
           x           0.00     -1.00
  Residual             0.89
---
number of obs: 1187, groups: eth, 4
AIC = 3124.9, DIC = 3088.3
deviance = 3100.6
 > M1 <- lmer (y ~ x + (1 + x | eth), verbose = TRUE)
   0:     3113.7366: 0.0947958 0.00141417  0.00000
   1:     3113.5186:  0.00000  0.00000 -0.991536
   2:     3113.1254: 0.00106590 0.00111325 -0.991536
   3:     3112.9224: 0.000649400 0.000651990 -0.991536
   4:     3112.9133: 0.000831104 0.000668572 -0.990942
   5:     3112.9121: 0.000715470 0.000730468 -0.991549
   6:     3112.9117: 0.000904225 0.000536358 -0.990990
   7:     3112.9114: 0.000874136 0.000514266 -0.990990
   8:     3112.9112: 0.000889956 0.000518593 -0.990956
   9:     3112.9111: 0.000908394 0.000472281 -0.990901
  10:     3112.9110: 0.000923320 0.000460105 -0.990753
  11:     3112.9106: 0.000995159 0.000309059 -0.989729
  12:     3112.9103: 0.00103245  0.00000 -0.988338
  13:     3112.9103: 0.00104480 1.00631e-09 -0.988338
  14:     3112.9103: 0.00103952 1.72994e-08 -0.988327
  15:     3112.9103: 0.00103952 2.02562e-08 -0.988327
  16:     3112.9103: 0.00103951 2.01450e-08 -0.988327
  17:     3112.9103: 0.00103951 2.01450e-08 -0.988327
  18:     3112.9103: 0.00103951 2.01450e-08 -0.988327
Warning message:
In mer_finalize(ans) : false convergence (8)

But in my old setup 2.11.1/2.10.1 a better solution is found:

 > M1 <- lmer (y ~ x + (1 + x | eth))
 > display (M1)
lmer(formula = y ~ x + (1 + x | eth))
             coef.est coef.se
(Intercept) 6.80     0.98
x           0.04     0.02

Error terms:
  Groups   Name        Std.Dev. Corr
  eth      (Intercept) 1.37
           x           0.02     -1.00
  Residual             0.89
---
number of obs: 1187, groups: eth, 4
AIC = 3121.7, DIC = 3086.7
deviance = 3098.2
 > M1 <- lmer (y ~ x + (1 + x | eth), verbose = TRUE)
   0:     3113.7366: 0.0947958 0.00141417  0.00000
   1:     3113.5186:  0.00000  0.00000 -0.991536
   2:     3113.1254: 0.00106590 0.00111325 -0.991536
   3:     3112.9224: 0.000649400 0.000651990 -0.991536
   4:     3112.9133: 0.000831104 0.000668572 -0.990942
   5:     3112.9121: 0.000715470 0.000730468 -0.991549
   6:     3112.9117: 0.000904407 0.000536168 -0.990990
   7:     3112.9114: 0.000874337 0.000514111 -0.990990
   8:     3112.9112: 0.000890081 0.000518391 -0.990956
   9:     3112.9111: 0.000908420 0.000472254 -0.990901
  10:     3112.9110: 0.000923309 0.000460131 -0.990753
  11:     3112.9106: 0.000994079 0.000311231 -0.989738
  12:     3112.9103: 0.00103382  0.00000 -0.988215
  13:     3112.9102: 0.00103963 3.55942e-10 -0.988215
  14:     3112.9099: 0.00114005 0.000142779 -0.893828
  15:     3112.9099: 0.00113930 9.68963e-05 -0.893828
  16:     3112.9099: 0.00114352 9.70670e-05 -0.893805
  17:     3112.9099: 0.00114631 9.68698e-05 -0.893782
  18:     3112.9099: 0.00114593 8.96231e-05 -0.893737
  19:     3112.9099: 0.00114697 8.94093e-05 -0.893635
  20:     3112.9099: 0.00114840 8.74568e-05 -0.893534
  21:     3112.9099: 0.00114767 8.69236e-05 -0.893331
  22:     3112.9099: 0.00114960 8.45012e-05 -0.892925
  23:     3112.9097: 0.00119713 0.000103484 -0.854718
  24:     3112.9096: 0.00123584 0.000118803 -0.823861
  25:     3112.9094: 0.00128530 0.000135095 -0.793003
  26:     3112.9092: 0.00134505 0.000150925 -0.755646
  27:     3112.9088: 0.00148850 0.000172432 -0.680932
  28:     3112.9087: 0.00158189 0.000173348 -0.654113
  29:     3112.9080: 0.00172167 0.000172246 -0.591365
  30:     3112.9078: 0.00178884 0.000169040 -0.566266
  31:     3112.9071: 0.00202232 2.33096e-05 -0.506894
  32:     3112.9067: 0.00207199  0.00000 -0.501077
  33:     3112.9063: 0.00219029  0.00000 -0.475171
  34:     3112.9059: 0.00228481  0.00000 -0.456053
  35:     3112.9052: 0.00250518 6.54281e-05 -0.417817
  36:     3112.9048: 0.00260386 6.61956e-05 -0.402523
  37:     3112.9041: 0.00281388 6.37610e-05 -0.371934
  38:     3112.9037: 0.00294734 5.86692e-05 -0.358875
  39:     3112.9029: 0.00315988 1.53970e-05 -0.332756
  40:     3112.9023: 0.00333904 5.76185e-05 -0.315483
  41:     3112.9022: 0.00337566 5.68599e-05 -0.315484
  42:     3112.9022: 0.00337228 2.04001e-05 -0.315482
  43:     3112.9022: 0.00339045 1.50348e-05 -0.315412
  44:     3112.9022: 0.00338041 1.25433e-05 -0.315376
  45:     3112.9022: 0.00338454 4.34985e-07 -0.315304
  46:     3112.9007: 0.00380902 4.53446e-07 -0.277795
  47:     3112.9001: 0.00401754  0.00000 -0.262792
  48:     3112.8984: 0.00456608  0.00000 -0.231839
  49:     3112.8956: 0.00545144 1.95070e-06 -0.195416
  50:     3112.8928: 0.00652406 1.16379e-05 -0.175790
  51:     3112.8916: 0.00660908  0.00000 -0.163760
  52:     3112.8890: 0.00773482 4.99796e-06 -0.139726
  53:     3112.8806: 0.00972168  0.00000 -0.121025
  54:     3112.8786: 0.0114761 5.99051e-06 -0.0970285
  55:     3112.8760: 0.0109215 6.10952e-06 -0.107449
  56:     3112.8703: 0.0130487  0.00000 -0.0891341
  57:     3112.8672: 0.0146986  0.00000 -0.0791535
  58:     3112.8538: 0.0174766  0.00000 -0.0712682
  59:     3112.8464: 0.0196425 9.24134e-08 -0.0648869
  60:     3112.8229: 0.0261589 1.12351e-07 -0.0530892
  61:     3112.8218: 0.0301145  0.00000 -0.0522032
  62:     3112.8064: 0.0310301 2.94121e-08 -0.0482541
  63:     3112.7853: 0.0370813  0.00000 -0.0428581
  64:     3112.7768: 0.0392902 5.51626e-07 -0.0404835
  65:     3112.7574: 0.0448577  0.00000 -0.0371558
  66:     3112.7034: 0.0688045 9.08273e-06 -0.0271719
  67:     3112.5859: 0.0947196 0.000137210 -0.0259377
  68:     3112.5520: 0.120260  0.00000 -0.0214016
  69:     3112.4267: 0.138009  0.00000 -0.0220440
  70:     3112.2524: 0.241689  0.00000 -0.0175340
  71:     3112.0653: 0.252030 5.74985e-06 -0.0195906
  72:     3111.6754: 0.350688  0.00000 -0.0176928
  73:     3111.5729: 0.396312  0.00000 -0.0169346
  74:     3111.4491: 0.441941  0.00000 -0.0166439
  75:     3110.9290: 0.624460  0.00000 -0.0161161
  76:     3110.0355:  1.03912  0.00000 -0.0160134
  77:     3109.9542:  1.12017  0.00000 -0.0157653
  78:     3109.8078:  1.29685  0.00000 -0.0157324
  79:     3109.7519:  1.45344  0.00000 -0.0157254
  80:     3109.7469:  1.52828  0.00000 -0.0156867
  81:     3109.7461:  1.53677  0.00000 -0.0157060
  82:     3109.7460:  1.53350  0.00000 -0.0157010
  83:     3109.7460:  1.53352  0.00000 -0.0157010

The two iterations start off at the same values but start to diverge 
around step 12.

Murray

-- 
Dr Murray Jorgensen      http://www.stats.waikato.ac.nz/Staff/maj.html
Department of Statistics, University of Waikato, Hamilton, New Zealand
Email: maj at waikato.ac.nz                                Fax 7 838 4155
Phone  +64 7 838 4773 wk    Home +64 7 825 0441   Mobile 021 0200 8350
-------------- next part --------------
An embedded and charset-unspecified text was scrubbed...
Name: heights.clean.txt
URL: <https://stat.ethz.ch/pipermail/r-sig-mixed-models/attachments/20110113/413ab686/attachment.txt>


More information about the R-sig-mixed-models mailing list