[R-sig-ME] Error message in ordinal() package running cumulative link mixed models function clmm()
Sverre Stausland
johnsen at fas.harvard.edu
Wed Jan 12 03:49:38 CET 2011
Dear all,
I have a data set where subjects gave a 1-7 rating to pairs of items,
and there's a set of numeric independent variables. The data set has
the following set-up:
Subject Pair Trial Response A B E
AM25Y x,y 54 1 2 4 3.13
AR82M x,y 65 3 2 4 3.13
BA89W b,n 27 1 5 6 5.17
CK44O b,n 19 1 5 6 5.17
etc.
Given the ordinal dependent variable, I need to run a ordinal
regression model. Since I want to model Subject and Pair as random
effects, I am trying Rune Haubo's clmm() function from the ordinal()
package.
First, running a cumulative link model with clm() works fine:
> clm(Response~Trial+A+B+C,data=dataset)->FullModel.clm
> summary(FullModel.clm)
Call:
clm(location = Response ~ Trial + A + B + C, data = dataset)
Location coefficients:
Estimate Std. Error z value Pr(>|z|)
Trial -0.0010 0.0009 -1.0638 0.28743
A -0.1953 0.0247 -7.9144 2.4841e-15
B -0.1446 0.0240 -6.0166 1.7809e-09
C -0.2151 0.0204 -10.5287 < 2.22e-16
No scale coefficients
Threshold coefficients:
Estimate Std. Error z value
1|1.5 -2.7595 0.0915 -30.1696
1.5|2 -2.7513 0.0914 -30.0925
2|3 -1.8590 0.0874 -21.2622
3|4 -1.1453 0.0853 -13.4291
4|5 -0.4202 0.0849 -4.9511
5|6 0.6346 0.0897 7.0737
6|6.5 2.3828 0.1289 18.4908
6.5|7 2.3942 0.1293 18.5119
log-likelihood: -9104.93
AIC: 18233.86
Condition number of Hessian: 342793.76
But when I try to run a cumulative link mixed model with Subject as a
random effect, I get errors:
> clmm(Response~Trial+A+B+C,random=Subject,data=dataset)->FullModel.clmm
There were 50 or more warnings (use warnings() to see the first 50)
> warnings()
Warning messages:
1: In rho$updateU(rho) : Non finite negative log-likelihood
at iteration 112
2: In rho$updateU(rho) : Non finite negative log-likelihood
at iteration 112
3: In rho$updateU(rho) : Non finite negative log-likelihood
at iteration 112
> summary(FullModel.clmm)
Cumulative Link Mixed Model fitted with the Laplace approximation
Call:
clmm(location = Response ~ Trial + A + B + C, random = Subject, data = dataset)
Random effects:
Var Std.Dev
Subject 2.241108 1.497033
Location coefficients:
Estimate Std. Error z value Pr(>|z|)
Trial -0.0015 NaN NaN NA
A -0.2581 NaN NaN NA
B -0.1833 NaN NaN NA
C -0.2833 NaN NaN NA
No scale coefficients
Threshold coefficients:
Estimate Std. Error z value
1|1.5 -3.6036 NaN NaN
1.5|2 -3.5921 NaN NaN
2|3 -2.3596 NaN NaN
3|4 -1.3958 NaN NaN
4|5 -0.4317 NaN NaN
5|6 0.9001 NaN NaN
6|6.5 2.8441 NaN NaN
6.5|7 2.8557 NaN NaN
log-likelihood: -8022.125
AIC: 16070.25
Condition number of Hessian: NaN
Warning message:
In summary.clmm(FullModel.clmm) :
Variance-covariance matrix of the parameters is not defined
I would appreciate if anyone could point out to me what I am doing
wrong in my use of the clmm() function.
Thanks
Sverre
More information about the R-sig-mixed-models
mailing list