[R-sig-ME] glmer with/without intercept gave different results
ONKELINX, Thierry
Thierry.ONKELINX at inbo.be
Thu Nov 18 16:42:46 CET 2010
Dear Ruby,
The hypotheses of those models are different. Hence the diference in
p-values.
Fit1:
H0: Capsule 1 = 0
H0: Capsule 2 - Capsule 1 = 0
H0: Control - Capsule 1 = 0
Fit2:
H0: Capsule 1 = 0
H0: Capsule 2 = 0
H0: Control = 0
However, the predictions of both model should be the same.
Best regards,
Thierry
------------------------------------------------------------------------
----
ir. Thierry Onkelinx
Instituut voor natuur- en bosonderzoek
team Biometrie & Kwaliteitszorg
Gaverstraat 4
9500 Geraardsbergen
Belgium
Research Institute for Nature and Forest
team Biometrics & Quality Assurance
Gaverstraat 4
9500 Geraardsbergen
Belgium
tel. + 32 54/436 185
Thierry.Onkelinx at inbo.be
www.inbo.be
To call in the statistician after the experiment is done may be no more
than asking him to perform a post-mortem examination: he may be able to
say what the experiment died of.
~ Sir Ronald Aylmer Fisher
The plural of anecdote is not data.
~ Roger Brinner
The combination of some data and an aching desire for an answer does not
ensure that a reasonable answer can be extracted from a given body of
data.
~ John Tukey
> -----Oorspronkelijk bericht-----
> Van: r-sig-mixed-models-bounces at r-project.org
> [mailto:r-sig-mixed-models-bounces at r-project.org] Namens Chang, Yu-Mei
> Verzonden: donderdag 18 november 2010 15:22
> Aan: r-sig-mixed-models at r-project.org
> Onderwerp: [R-sig-ME] glmer with/without intercept gave
> different results
>
> Dear all,
>
>
>
> I have fitted two glmer models (with or without intercept
> term). I thought the results should be similar if not
> identical, but they are quite different. I suspect it's
> related to the random effects. Any suggestions on how to
> proceed is greatly appreciated.
>
>
>
> Kind regards,
>
> Ruby Chang
>
>
>
> fit1 <- glmer(Cyptoplasmic.vacuolation ~ Group + (1|Villus)
> + (1|Cell),family=binomial(link = "logit"))
>
> fit2 <- glmer(Cyptoplasmic.vacuolation ~ Group -1 +
> (1|Villus) + (1|Cell),family=binomial(link = "logit"))
>
>
>
> > table(Cyptoplasmic.vacuolation, Group)
>
> Group
>
> Cyptoplasmic.vacuolation Capsule 1 Capsule 2 Control
>
> 0 560 340 1230
>
> 1 190 160 20
>
>
>
> > fit1 <- glmer(Cyptoplasmic.vacuolation ~ Group + (1|Villus) +
> (1|Cell),family=binomial(link = "logit"))
>
> > summary(fit1)
>
> Generalized linear mixed model fit by the Laplace approximation
>
> Formula: Cyptoplasmic.vacuolation ~ Group + (1 | Villus) + (1 | Cell)
>
> AIC BIC logLik deviance
>
> 138.9 168.1 -64.47 128.9
>
> Random effects:
>
> Groups Name Variance Std.Dev.
>
> Cell (Intercept) 1983.5708 44.5373
>
> Villus (Intercept) 5.9475 2.4387
>
> Number of obs: 2500, groups: Cell, 250; Villus, 50
>
>
>
> Fixed effects:
>
> Estimate Std. Error z value Pr(>|z|)
>
> (Intercept) -11.945 9.123 -1.309 0.190
>
> GroupCapsule 2 -1.409 14.343 -0.098 0.922
>
> GroupControl -17.792 33.251 -0.535 0.593
>
>
>
> Correlation of Fixed Effects:
>
> (Intr) GrpCp2
>
> GroupCapsl2 -0.636
>
> GroupContrl -0.274 0.175
>
> > fit2 <- glmer(Cyptoplasmic.vacuolation ~ Group -1 + (1|Villus) +
> (1|Cell),family=binomial(link = "logit"))
>
> > summary(fit2)
>
> Generalized linear mixed model fit by the Laplace approximation
>
> Formula: Cyptoplasmic.vacuolation ~ Group - 1 + (1 | Villus) + (1 |
> Cell)
>
> AIC BIC logLik deviance
>
> 132.9 162.0 -61.43 122.9
>
> Random effects:
>
> Groups Name Variance Std.Dev.
>
> Cell (Intercept) 5.9933e+03 7.7417e+01
>
> Villus (Intercept) 1.2025e-07 3.4677e-04
>
> Number of obs: 2500, groups: Cell, 250; Villus, 50
>
>
>
> Fixed effects:
>
> Estimate Std. Error z value Pr(>|z|)
>
> GroupCapsule 1 -15.08 17.70 -0.852 0.394
>
> GroupCapsule 2 -14.72 19.29 -0.763 0.445
>
> GroupControl -18.23 54.54 -0.334 0.738
>
>
>
> Correlation of Fixed Effects:
>
> GrpCp1 GrpCp2
>
> GroupCapsl2 0.000
>
> GroupContrl 0.000 0.000
>
>
> [[alternative HTML version deleted]]
>
> _______________________________________________
> R-sig-mixed-models at r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models
>
More information about the R-sig-mixed-models
mailing list