[R-sig-ME] MCMCglmm for binomial models?
Bob Farmer
farmerb at gmail.com
Mon Sep 20 23:47:44 CEST 2010
Thanks for the further detail. I wasn't familiar with these two
methods of overdispersion; I think I only understood them in the
WinBUGS sense, which, I believe, is additive (e.g. overdisp[i] as a
parameter). I'll have to explore the family() helpfiles a bit more.
Below is a summary of the model outputs from the three methods
described earlier. Note that here, I bumped the WinBUGS iterations to
750E3 to reduce the Rhats a bit further.
I also use an adaptation of the bugsParallel function to make my
WinBUGS runs 3x faster (time for this run: 5.8 minutes); I can
provide details if anybody else would like to use this function (and
some other bugs summary functions I've written).
Hope this is useful or interesting -- I appreciate this discussion!
--Bob
**glmer**
> summary(gm3)@coefs
Estimate Std. Error t value
(Intercept) -1.3985351 0.01698321 -82.34810
period2 -0.9923347 0.02275838 -43.60304
period3 -1.1286754 0.02429833 -46.45075
period4 -1.5803739 0.03195596 -49.45474
**MCMCglmm**
> summary(mc3)
Iterations = 749351
Thinning interval = 100001
Sample size = 1000
DIC: 539.7889
G-structure: ~herd
post.mean l-95% CI u-95% CI eff.samp
herd 0.2894 1.309e-06 1.035 1000
R-structure: ~units
post.mean l-95% CI u-95% CI eff.samp
units 0.93 0.003825 1.98 1000
Location effects: cbind(incidence, size - incidence) ~ period
post.mean l-95% CI u-95% CI eff.samp pMCMC
(Intercept) -1.5263 -2.2221 -0.9602 1000.0 <0.001 ***
period2 -1.2407 -2.2072 -0.2449 947.2 0.012 *
period3 -1.3574 -2.4534 -0.3472 1000.0 0.012 *
period4 -1.9126 -3.2662 -0.8298 1136.0 0.002 **
**WinBUGS**
> bug3$summary[which(rownames(bug3$summary) %in% params), c("mean", "sd", "2.5%", "97.5%", "Rhat", "n.eff")]
mean sd 2.5% 97.5% Rhat n.eff
B.0 -1.6070301 0.3556674 -2.33980000 -0.9947425 1.039548 69
B.period2 -1.2761798 0.4895902 -2.14292500 -0.2391200 1.018612 210
B.period3 -1.5100405 0.6337780 -2.63680000 -0.2266425 1.123427 22
B.period4 -2.0678331 0.6539004 -3.31892500 -0.8586700 1.018622 270
sigma.overdisp 1.1975969 0.3147531 0.69358404 1.8740000 1.045062 55
sigma.b.herd 0.5120043 0.3825848 0.01658429 1.3659249 1.542432 7
(note that I can provide a link to parameter histograms, if you want
more detail)
--Bob
More information about the R-sig-mixed-models
mailing list