[R-sig-ME] lmer() vs. lme() gave different variance component estimates
Peter Dalgaard
pdalgd at gmail.com
Sat Sep 18 11:58:37 CEST 2010
On 09/18/2010 11:24 AM, Jarrod Hadfield wrote:
> Fedora Core 13 seems fine:
>
> Linear mixed model fit by REML
> Formula: score ~ trt + (1 | id/eye)
> Data: dat
> AIC BIC logLik deviance REMLdev
> 425.2 474.2 -201.6 412.7 403.2
> Random effects:
> Groups Name Variance Std.Dev.
> eye:id (Intercept) 3.59532 1.89613
> id (Intercept) 3.51024 1.87356
> Residual 0.01875 0.13693
> Number of obs: 640, groups: eye:id, 160; id, 80
Not in 32bit:
> lmer(score~trt+(1|id/eye),dat)
Linear mixed model fit by REML
Formula: score ~ trt + (1 | id/eye)
Data: dat
AIC BIC logLik deviance REMLdev
446.7 495.8 -212.4 430.9 424.7
Random effects:
Groups Name Variance Std.Dev.
eye:id (Intercept) 6.9208e+00 2.6307e+00
id (Intercept) 4.0996e-12 2.0248e-06
Residual 1.8750e-02 1.3693e-01
Number of obs: 640, groups: eye:id, 160; id, 80
Diddling the start values can change the result, though. Could you all try
(a) setting verbose=T
(b) try start=list(matrix(10),matrix(10))
(c) same thing, but with .81 and .57
In the (c) case, I get
> l <- lmer(score~trt+(1|id/eye),dat,
start=list(matrix(.81),matrix(.57)), verbose=T)
0: 2226.5319: 0.810000 0.570000
1: 1304.7507: 2.42844 1.75398
2: 776.66839: 6.30805 0.00000
3: 657.56008: 7.73875 0.00000
4: 514.89378: 10.7783 0.00000
5: 460.61371: 13.2310 0.00000
6: 434.88972: 15.6779 1.52026e-08
7: 426.68822: 17.5387 6.57868e-08
8: 424.89428: 18.6843 1.41900e-07
9: 424.71823: 19.1258 2.47916e-07
10: 424.71356: 19.2075 3.75766e-07
11: 424.71354: 19.2122 5.37851e-07
12: 424.71354: 19.2122 7.55161e-07
which suggests an algorithm error where the parameters are getting stuck
on the boundary. These values match the automatically generated starting
values only to two digits, so I'm somewhat baffled that you apparently
get something completely different in 64 bits!
--
Peter Dalgaard
Center for Statistics, Copenhagen Business School
Phone: (+45)38153501
Email: pd.mes at cbs.dk Priv: PDalgd at gmail.com
More information about the R-sig-mixed-models
mailing list