[R-sig-ME] lmer() vs. lme() gave different variance component estimates

Andrew Robinson A.Robinson at ms.unimelb.edu.au
Sat Sep 18 22:34:09 CEST 2010


So far the results split on platform lines: John's is pc, Daniel's and
Reinhold's are Mac.

I get the Mac result on FreeBSD.

> lmer(score~trt+(1|id/eye),dat)
Linear mixed model fit by REML 
Formula: score ~ trt + (1 | id/eye) 
   Data: dat 
   AIC   BIC logLik deviance REMLdev
 425.2 474.2 -201.6    412.7   403.2
Random effects:
 Groups   Name        Variance Std.Dev.
 eye:id   (Intercept) 3.59531  1.89613 
 id       (Intercept) 3.51025  1.87357 
 Residual             0.01875  0.13693 
Number of obs: 640, groups: eye:id, 160; id, 80

Fixed effects:
            Estimate Std. Error t value
(Intercept)   2.5500     0.7287   3.499
trtB          0.9875     1.0305   0.958
trtC          0.8625     1.0305   0.837
trtControl    1.1500     1.0305   1.116
trtD          2.4125     1.0305   2.341
trtE          1.4375     1.0305   1.395
trtF          2.1750     1.0305   2.111
trtG         -2.5500     1.0305  -2.474

Correlation of Fixed Effects:
           (Intr) trtB   trtC   trtCnt trtD   trtE   trtF  
trtB       -0.707                                          
trtC       -0.707  0.500                                   
trtControl -0.707  0.500  0.500                            
trtD       -0.707  0.500  0.500  0.500                     
trtE       -0.707  0.500  0.500  0.500  0.500              
trtF       -0.707  0.500  0.500  0.500  0.500  0.500       
trtG       -0.707  0.500  0.500  0.500  0.500  0.500  0.500
> sessionInfo()
R version 2.11.1 (2010-05-31) 
x86_64-unknown-freebsd8.0 

locale:
[1] C

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base
  

other attached packages:
[1] lme4_0.999375-35   Matrix_0.999375-43 lattice_0.19-11   

loaded via a namespace (and not attached):
[1] grid_2.11.1   nlme_3.1-96   stats4_2.11.1



Cheers

Andrew


On Fri, Sep 17, 2010 at 04:57:59PM -0300, Daniel wrote:
> I really don't know what is going wrong.
> 
>  sessionInfo()
> R version 2.11.1 (2010-05-31)
> x86_64-apple-darwin9.8.0
> 
> locale:
> [1] en_US.UTF-8/en_US.UTF-8/C/C/en_US.UTF-8/en_US.UTF-8
> 
> attached base packages:
> [1] stats     graphics  grDevices utils     datasets  methods   base
> 
> other attached packages:
> [1] lme4_0.999375-35   Matrix_0.999375-43 lattice_0.18-8
> 
> loaded via a namespace (and not attached):
> [1] grid_2.11.1   nlme_3.1-96   stats4_2.11.1
> 
> 
> On Fri, Sep 17, 2010 at 4:33 PM, array chip <arrayprofile at yahoo.com> wrote:
> 
> > Hi, Reinhold and Daniel,
> >
> > I just re-installed lme4 package, still got different results than yours.
> >
> > Here is my sessionInfo():
> >
> > R version 2.11.1 (2010-05-31)
> > i386-pc-mingw32
> >
> > locale:
> > [1] LC_COLLATE=English_United States.1252
> > [2] LC_CTYPE=English_United States.1252
> > [3] LC_MONETARY=English_United States.1252
> > [4] LC_NUMERIC=C
> > [5] LC_TIME=English_United States.1252
> >
> > attached base packages:
> > [1] stats     graphics  grDevices datasets  utils     methods   base
> >
> > other attached packages:
> > [1] lme4_0.999375-35   Matrix_0.999375-43 lattice_0.18-8
> >
> > loaded via a namespace (and not attached):
> > [1] grid_2.11.1   nlme_3.1-96   stats4_2.11.1
> >
> > John
> >
> >
> >
> >
> >
> >
> >
> >
> >
> > ----- Original Message ----
> > From: Reinhold Kliegl <reinhold.kliegl at gmail.com>
> > To: array chip <arrayprofile at yahoo.com>
> > Cc: r-sig-mixed-models at r-project.org
> > Sent: Fri, September 17, 2010 12:14:13 PM
> > Subject: Re: [R-sig-ME] lmer() vs. lme() gave different variance component
> > estimates
> >
> > Not on my computer. Perhaps you could provide sessionInfo()?
> >
> > > lmer(score~trt+(1|id/eye), dat)
> > Linear mixed model fit by REML
> > Formula: score ~ trt + (1 | id/eye)
> >   Data: dat
> >   AIC   BIC logLik deviance REMLdev
> > 425.2 474.2 -201.6    412.7   403.2
> > Random effects:
> > Groups   Name        Variance Std.Dev.
> > eye:id   (Intercept) 3.59532  1.89613
> > id       (Intercept) 3.51024  1.87356
> > Residual             0.01875  0.13693
> > Number of obs: 640, groups: eye:id, 160; id, 80
> >
> > > sessionInfo()
> > R version 2.11.1 Patched (2010-07-16 r52550)
> > x86_64-apple-darwin9.8.0
> >
> > locale:
> > [1] en_US.UTF-8/en_US.UTF-8/C/C/en_US.UTF-8/en_US.UTF-8
> >
> > attached base packages:
> > [1] stats     graphics  grDevices utils     datasets  methods   base
> >
> > other attached packages:
> > [1] lme4_0.999375-34   Matrix_0.999375-43 lattice_0.18-8
> >
> > loaded via a namespace (and not attached):
> > [1] grid_2.11.1   nlme_3.1-96   stats4_2.11.1 tools_2.11.1
> >
> > Reinhold Kliegl
> >
> >
> > On Fri, Sep 17, 2010 at 8:39 PM, array chip <arrayprofile at yahoo.com>
> > wrote:
> > > Hi, I have a dataset of animals receiving some eye treatments. There are
> > 8
> > > treatments, each animal's right and left eye was measured with some
> > scores
> > > (ranging from 0 to 7) 4 times after treatment. So there are nesting
> > groups
> > eyes
> > > within animal. Dataset attached
> > >
> > >> dat<-read.table("dat.txt",sep='\t',header=T,row.names=1)
> > >> dat$id<-factor(dat$id)
> > >> str(dat)
> > > 'data.frame':   640 obs. of  5 variables:
> > >  $ score: int  0 2 0 7 4 7 0 2 0 7 ...
> > >  $ id   : Factor w/ 80 levels "1","3","6","10",..: 7 48 66 54 18 26 38 52
> > 39
> > 63
> > > ...
> > >  $ rep  : int  1 1 1 1 1 1 1 1 1 1 ...
> > >  $ eye  : Factor w/ 2 levels "L","R": 2 2 2 2 2 2 2 2 2 2 ...
> > >  $ trt  : Factor w/ 8 levels "A","B","C","Control",..: 1 1 1 1 1 1 1 1 1
> > 1 ...
> > >
> > > I fit a mixed model using both lmer() from lme4 package and lme() from
> > nlme
> > > package:
> > >
> > >> lmer(score~trt+(1|id/eye),dat)
> > >
> > > Linear mixed model fit by REML
> > > Formula: score ~ trt + (1 | id/eye)
> > >   Data: dat
> > >   AIC   BIC logLik deviance REMLdev
> > >  446.7 495.8 -212.4    430.9   424.7
> > > Random effects:
> > >  Groups   Name        Variance   Std.Dev.
> > >  eye:id   (Intercept) 6.9208e+00 2.630742315798
> > >  id       (Intercept) 1.4471e-16 0.000000012030
> > >  Residual             1.8750e-02 0.136930641909
> > > Number of obs: 640, groups: eye:id, 160; id, 80
> > >
> > >> summary(lme(score~trt, random=(~1|id/eye), dat))
> > >
> > > Linear mixed-effects model fit by REML
> > >  Data: dat
> > >       AIC      BIC    logLik
> > >  425.1569 474.0947 -201.5785
> > >
> > > Random effects:
> > >  Formula: ~1 | id
> > >        (Intercept)
> > > StdDev:    1.873576
> > >
> > >  Formula: ~1 | eye %in% id
> > >        (Intercept)  Residual
> > > StdDev:    1.896126 0.1369306
> > >
> > > As you can see, the variance components estimates of random effects are
> > quite
> > > different between the 2 model fits. From the data, I know that the
> > variance
> > > component for "id" can't be near 0, which is what lmer() fit produced, so
> > I
> > > think the lme() fit is correct while lmer() fit is off. This can also be
> > seen
> > > from AIC, BIC etc. lme() fit has better values than lmer() fit.
> > >
> > >
> > > I guess this might be due to lmer() didn't converge very well, is there
> > anyway
> > > to adjust to make lmer() converge better to get similar results as lme()?
> > >
> > > Thanks
> > >
> > > John
> > >
> > >
> > >
> > > _______________________________________________
> > > R-sig-mixed-models at r-project.org mailing list
> > > https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models
> > >
> > >
> >
> >
> >
> >
> >
> >
> 
> 
> -- 
> Daniel Marcelino
> Skype: dmsilv
> http://bit.ly/pol4vc
> 
> 	[[alternative HTML version deleted]]
> 
> _______________________________________________
> R-sig-mixed-models at r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models

-- 
Andrew Robinson  
Program Manager, ACERA 
Department of Mathematics and Statistics            Tel: +61-3-8344-6410
University of Melbourne, VIC 3010 Australia               (prefer email)
http://www.ms.unimelb.edu.au/~andrewpr              Fax: +61-3-8344-4599
http://www.acera.unimelb.edu.au/




More information about the R-sig-mixed-models mailing list