[R-sig-ME] Binary response ordering
ONKELINX, Thierry
Thierry.ONKELINX at inbo.be
Wed Aug 4 11:05:32 CEST 2010
Is this homework? The data and the analysis look very similar to the one
is this post
https://stat.ethz.ch/pipermail/r-sig-mixed-models/2010q3/004203.html
------------------------------------------------------------------------
----
ir. Thierry Onkelinx
Instituut voor natuur- en bosonderzoek
team Biometrie & Kwaliteitszorg
Gaverstraat 4
9500 Geraardsbergen
Belgium
Research Institute for Nature and Forest
team Biometrics & Quality Assurance
Gaverstraat 4
9500 Geraardsbergen
Belgium
tel. + 32 54/436 185
Thierry.Onkelinx at inbo.be
www.inbo.be
To call in the statistician after the experiment is done may be no more
than asking him to perform a post-mortem examination: he may be able to
say what the experiment died of.
~ Sir Ronald Aylmer Fisher
The plural of anecdote is not data.
~ Roger Brinner
The combination of some data and an aching desire for an answer does not
ensure that a reasonable answer can be extracted from a given body of
data.
~ John Tukey
> -----Oorspronkelijk bericht-----
> Van: r-sig-mixed-models-bounces at r-project.org
> [mailto:r-sig-mixed-models-bounces at r-project.org] Namens John Haart
> Verzonden: woensdag 4 augustus 2010 10:54
> Aan: r-sig-mixed-models at r-project.org
> Onderwerp: [R-sig-ME] Binary response ordering
>
> Dear List,
>
> I have a quick question regarding the setup of my data for
> analysis with a glmm. I hope this is the appropriate list, i
> apologise if it is not.
>
> I have a response variable, TRUE or FALSE. I have coded this
> as 0 = False and 1 = TRUE in excel.
>
> I have 3 categorical factors with C,D and E
>
> I then read in the data frame and run the model as follows-
>
> lmer(trueorfalse~1+(1|A/B) + C + D+ E ,family=binomial)
>
> And this is the output
>
> Generalized linear mixed model fit by the Laplace approximation
> Formula: threatornot ~ 1 + (1 | A/B) + C + D+ E ,family=binomial)
> AIC BIC logLik deviance
> 1410 1450 -696.8 1394
> Random effects:
> Groups Name Variance Std.Dev.
> family:order (Intercept) 6.7869e-01 8.2382e-01
> order (Intercept) 7.8204e-11 8.8433e-06
> Number of obs: 1116, groups: A:B, 43; B, 9
>
> Fixed effects:
> Estimate Std. Error z value Pr(>|z|)
> (Intercept) 0.11281 0.42232 0.267 0.7894
> C1 -0.02414 0.19964 -0.121 0.9038
> D2 -0.16482 0.38602 -0.427 0.6694
> E2 0.95381 0.54316 1.756 0.0791 .
> E3 0.75733 0.87275 0.868 0.3855
> E4 0.03044 0.47328 0.064 0.9487
>
> What i am unsure about is the inference, if a term is
> significant does this relate to TRUE or FALSE?
>
> I.E E2 has a p value of 0.079, does this 0.079 relate to the
> probability of it resulting in a true or false response? Does
> it matter how i code the input i.e FALSE = 1, TRUE =2 for instance?
>
> Maybe i am reading the output wrong?
>
> Thanks
>
> John
>
> _______________________________________________
> R-sig-mixed-models at r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models
>
Druk dit bericht a.u.b. niet onnodig af.
Please do not print this message unnecessarily.
Dit bericht en eventuele bijlagen geven enkel de visie van de schrijver weer
en binden het INBO onder geen enkel beding, zolang dit bericht niet bevestigd is
door een geldig ondertekend document. The views expressed in this message
and any annex are purely those of the writer and may not be regarded as stating
an official position of INBO, as long as the message is not confirmed by a duly
signed document.
More information about the R-sig-mixed-models
mailing list