[R-sig-ME] gamm4 model formulation clarification
Reinhold Kliegl
reinhold.kliegl at gmail.com
Sat Jul 31 23:47:20 CEST 2010
Sorry, the following line should be:
constrasts(ab$g) <- cmat
On Sat, Jul 31, 2010 at 11:30 PM, Reinhold Kliegl
<reinhold.kliegl at gmail.com> wrote:
> Perhaps assign contrasts to g. For example,
> # ... ... contrast estimates
> cmat <- matrix(c( -1/2, -1/2, +1/2, +1/2, # Main effect 1
> -1/2, +1/2, -1/2, +1/2, # Main effect 2
> +1/2, -1/2, -1/2, +1/2), 4, 3, # Interaction
> dimnames=list(c("A1", "A2", "A3", "A4"),
> c(".34-12", ".24-13", ".14-23")))
>
> constrasts(g) <- cmat
> fit = gamm4(
> data = ab
> , formula = rrt ~ g+s(soa,by=g)
> , random = ~ (1|id)
> , family = 'gaussian'
> )
>
> Reinhold Kliegl
>
> On Sat, Jul 31, 2010 at 6:10 AM, Mike Lawrence <Mike.Lawrence at dal.ca> wrote:
>> Hi folks,
>>
>> I have some data that form a 2x2x15 design, where the 15 level
>> variable is a discrete sampling of a ratio variable with clear
>> non-linearities (see bottom for a dput() of the means). I came across
>> gamm4 tonight and it looks like it will help tackle this data, but I'm
>> not sure how to tell it to let the smooth of the 15 level variable
>> vary as a function of BOTH of the other predictor variables. As a
>> hack, I created a dummy 4 level variable that represented the
>> combination of the 2x2 level variables, but I'm not positive that this
>> was the right thing to do. Any feedback would be greatly appreciated.
>> Here's how I had things set up:
>>
>>> str(ab)
>> 'data.frame': 49668 obs. of 5 variables:
>> $ id : Factor w/ 20 levels "5","6","7","8",..: 1 1 1 1 1 1 1 1 1 1 ...
>> $ design : Factor w/ 2 levels "CD","NCD": 1 1 1 1 1 1 1 1 1 1 ...
>> $ ddB : Factor w/ 2 levels "0ddB","+ddB": 1 1 1 1 1 1 1 1 1 1 ...
>> $ soa : num 300 300 300 300 300 300 300 300 300 300 ...
>> $ rt : num 441 373 440 290 221 ...
>> $ g : Factor w/ 4 levels "+ddB CD","+ddB NCD",..: 3 3 3 3 3 3
>> 3 3 3 3 ...
>>
>> #id is the random effect (human participants)
>> #design and ddB are 2-level fixed effects
>> #soa is a 15 level fixed effect
>> #rt is the data to predict (there are dozens of observations for each
>> combination of the random and fixed effects)
>>
>> #fit using dummy variable "g" to get different soa smooths per
>> combination of ddB and design
>> fit = gamm4(
>> data = ab
>> , formula = rrt ~ ddB*design+s(soa,by=g)
>> , random = ~ (1|id)
>> , family = 'gaussian'
>> )
>>
>>
>> #here's dput() ouput of the 2x2x15 means, revealing that soa is
>> clearly non-linear
>>> dput(means)
>> structure(list(ddB = structure(c(1L, 2L, 1L, 2L, 1L, 2L, 1L,
>> 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L,
>> 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L,
>> 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L,
>> 2L, 1L, 2L, 1L, 2L), .Label = c("0ddB", "+ddB"), class = "factor"),
>> design = structure(c(1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 1L,
>> 1L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L,
>> 1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 2L,
>> 2L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 1L,
>> 2L, 2L, 1L, 1L, 2L, 2L), .Label = c("CD", "NCD"), class = "factor"),
>> soa = c(-175, -175, -175, -175, -125, -125, -125, -125, -75,
>> -75, -75, -75, -25, -25, -25, -25, 25, 25, 25, 25, 75, 75,
>> 75, 75, 125, 125, 125, 125, 175, 175, 175, 175, 250, 250,
>> 250, 250, 350, 350, 350, 350, 450, 450, 450, 450, 550, 550,
>> 550, 550, 700, 700, 700, 700, 900, 900, 900, 900, 1100, 1100,
>> 1100, 1100), rt = structure(c(444.93273739708, 441.513208123373,
>> 471.546335977687, 472.283526755609, 444.056771928409, 442.461563636396,
>> 472.166623352385, 474.462330421383, 445.513188139913, 444.966221088285,
>> 475.669898472348, 461.315736508479, 442.982086750377, 435.355068015326,
>> 458.89264807265, 455.638816561315, 434.340063293089, 415.709247937572,
>> 450.359216604288, 438.114012378908, 420.982354512772, 404.811090521404,
>> 442.721222728774, 430.421981079446, 406.373845346035, 393.411137886923,
>> 439.687373941982, 427.611295261772, 398.185439780545, 384.007719475387,
>> 429.451304040456, 431.531830923294, 390.486982286177, 380.880066145206,
>> 431.287499227013, 435.926925139256, 382.937376664574, 382.020452210116,
>> 439.606939778423, 441.751714989440, 384.546631449636, 385.477927260379,
>> 440.7286749068, 442.790235121405, 387.589278670798, 386.68589658312,
>> 440.384534575679, 440.376618739428, 392.649929780933, 392.496542853778,
>> 442.673509587221, 446.148838198613, 401.042352162140, 394.475542684099,
>> 441.072702415870, 440.157897723193, 406.059905100442, 398.292572833949,
>> 443.899793077701, 445.715779415161), .Dim = c(60L, 1L), .Dimnames = list(
>> NULL, NULL))), .Names = c("ddB", "design", "soa", "rt"
>> ), row.names = c(NA, 60L), class = "data.frame")
>>
>> #visualise the means
>> library(ggplot2)
>> ggplot(
>> data = means
>> , mapping = aes(
>> x = soa
>> , y = rt
>> , colour = design
>> , linetype = ddB
>> )
>> )+
>> geom_line()+
>> geom_point(shape=21,fill='white')
>>
>> --
>> Mike Lawrence
>> Graduate Student
>> Department of Psychology
>> Dalhousie University
>>
>> Looking to arrange a meeting? Check my public calendar:
>> http://tr.im/mikes_public_calendar
>>
>> ~ Certainty is folly... I think. ~
>>
>> _______________________________________________
>> R-sig-mixed-models at r-project.org mailing list
>> https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models
>>
>
More information about the R-sig-mixed-models
mailing list