[R-sig-ME] Function to create candidate model list
Andy Fugard
andyfugard at gmail.com
Wed Jul 14 18:00:44 CEST 2010
There's one here:
http://www.andyfugard.info/TypeII_Lmer.R
which might give you some clues for how to write what you really want.
(See examples at end.) It does a sort of iterated "drop1" - only on
the fixed effects. It doesn't touch the random effects at all, which
means you'll end up with nonsense if you have a random slope, e.g.,
models of these forms will be compared.
y ~ 1 + x + (x|id)
y ~ 1 + (x|id)
Here's example output:
lmer.typeII(r2 ~ (Anger * Gender * btype * situ) + (1|id) + (1|item),
family = binomial, data = VerbAgg)
AIC BIC Chisq Chi Df Pr(>Chisq)
Anger -9.52 -2.58 11.52 1 0.00
Gender -0.78 6.15 2.78 1 0.10
btype -27.88 -14.01 31.88 2 0.00
situ -15.20 -8.27 17.20 1 0.00
Anger:Gender 2.00 8.93 0.00 1 0.98
Anger:btype 2.03 15.90 1.97 2 0.37
Anger:situ -0.63 6.30 2.63 1 0.10
Gender:btype -14.83 -0.96 18.83 2 0.00
Gender:situ 1.48 8.42 0.52 1 0.47
btype:situ 2.75 16.61 1.25 2 0.53
Anger:Gender:btype 0.87 14.74 3.13 2 0.21
Anger:Gender:situ -0.09 6.85 2.09 1 0.15
Anger:btype:situ 3.32 17.19 0.68 2 0.71
Gender:btype:situ 3.33 17.20 0.67 2 0.71
Anger:Gender:btype:situ 3.57 17.44 0.43 2 0.81
For instance the row for Anger is the result of comparing these two models:
r2 ~ Anger + Gender + btype + situ + (1 | id) + (1 | item)
r2 ~ Gender + btype + situ + (1 | id) + (1 | item)
(the AIC and BIC columns are differences; Chisq is the log-likelihood
ratio.)
The row for Anger:Gender is the result of comparing:
r2 ~ Anger + Gender + btype + situ + (1 | id) + (1 | item) +
Anger:Gender + Anger:btype + Anger:situ + Gender:btype +
Gender:situ + btype:situ
r2 ~ Anger + Gender + btype + situ + (1 | id) + (1 | item) +
+ Anger:btype + Anger:situ + Gender:btype +
Gender:situ + btype:situ
Cheers,
Andy
On Wed, Jul 14, 2010 at 17:10, Raymond Danner <rdanner at vt.edu> wrote:
>
> Dear R users,
>
> Could anyone recommend a function that creates a list of all possible
> candidate mixed models (type lmer) from specified fixed and random
> variables? So that you know where I雋 going--I would then like to rank
> these models with AIC and calculate model averages with the AICcmodavg
> package.
>
> Thanks in advance,
> Ray
>
> [[alternative HTML version deleted]]
>
>
> _______________________________________________
> R-sig-mixed-models at r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models
>
More information about the R-sig-mixed-models
mailing list