[R-sig-ME] different aic and LL in glmer(lme4) and glimmix(SAS)?
Adam D. I. Kramer
adik at ilovebacon.org
Thu Jul 1 18:38:46 CEST 2010
Also...R is giving you a model with LESS deviance. So, it's doing a better
job...why would you want to reproduce SAS? :)
--Adam
On Thu, 1 Jul 2010, Jeffrey Evans wrote:
> Good question.
>
> They are similar
>
> Compare models with nested fixed effects structures
> Full model = lnsdlmaxd + lnadultssdld + lnsdlmaxd:lnadultssdld
> Reduced model = lnsdlmaxd + lnadultssdld
>
> AIC R SAS
> Full 1150 1663.9
> Reduced 1159 1673.4
> -------------------------------
> deltaAIC 9 9.5
>
>
> ________________________________
>
> From: almost at gmail.com [mailto:almost at gmail.com] On Behalf Of Andy Fugard
> Sent: Thursday, July 01, 2010 12:16 PM
> To: Jeffrey Evans
> Cc: r-sig-mixed-models at r-project.org
> Subject: Re: [R-sig-ME] different aic and LL in glmer(lme4) and
> glimmix(SAS)?
>
>
> Hi Jeff,
>
> Can't answer the question, but out of interest, what happens when you
> compare nested models in R and SAS, e.g., models with and without the
> lnsdlmaxd:lnadultssdld interaction? Would be interesting to see the
> log-likehood ratio (and maybe /change/ in AIC and BIC between the models).
>
> Cheers,
>
> Andy
>
>
> On Thu, Jul 1, 2010 at 18:03, Jeffrey Evans <Jeffrey.Evans at dartmouth.edu>
> wrote:
>
>
> Hello All,
>
> I have read several posts related to this previously, but haven't
> found any
> resolution yet. When running the same GLMM in glmer and in SAS PROC
> GLIMMIX,
> both programs return comparable parameter estimates, but wildly
> different
> likelihoods and AIC values.
>
> In SAS I specify use of the Laplace approximation. In R, I believe
> this is
> the default (no?).
>
> What's the difference, and [how] can I reproduce the SAS -2ll in
> glmer?
>
> Thanks,
> Jeff
>
> \/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/
> > R_GLMM = glmer(cbind(SdlFinal, SdlMax-SdlFinal) ~
> lnsdlmaxd*lnadultssdld +
> (1|ID),data=sdlPCAdat,family="binomial")
> > R_GLMM
> Generalized linear mixed model fit by the Laplace approximation
> Formula: cbind(SdlFinal, SdlMax - SdlFinal) ~ lnsdlmaxd *
> lnadultssdld +
> (1 | ID)
> Data: sdlPCAdat
> AIC BIC logLik deviance
> 1150 1165 -570 1140 <------------------ this line!!
> Random effects:
> Groups Name Variance Std.Dev.
> ID (Intercept) 1.2491 1.1176
> Number of obs: 144, groups: ID, 48
>
> Fixed effects:
> Estimate Std. Error z value Pr(>|z|)
> (Intercept) 4.56964 0.43148 10.591 < 2e-16 ***
> lnsdlmaxd -0.65936 0.05686 -11.595 < 2e-16 ***
> lnadultssdld -0.64534 0.15861 -4.069 4.73e-05 ***
> lnsdlmaxd:lnadultssdld 0.07393 0.02166 3.414 0.00064 ***
> ---
> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
>
> Correlation of Fixed Effects:
> (Intr) lnsdlm lndlts
> lnsdlmaxd -0.923
> lnadltssdld -0.461 0.479
> lnsdlmxd:ln 0.482 -0.508 -0.994
>
>
> \/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/
> title 'SAS GLMM';
> proc glimmix data=sdlPCAdat ic=pq noitprint method=laplace;
> class site id;
> model sdlfinal/sdlmax = lnsdlmaxd|lnadultssdld/ solution
> dist=binomial;
> random ID /;
> covtest glm/wald;
> run;
>
>
> //////////////////////////////////////////////////////////////////////
>
> SAS GLMM 19:36 Wednesday, June 30, 2010 88
>
> The GLIMMIX Procedure
>
> Data Set WORK.SDLPCADAT
> Response Variable (Events) SdlFinal
> Response Variable (Trials) SdlMax
> Response Distribution Binomial
> Link Function Logit
> Variance Function Default
> Variance Matrix Not blocked
> Estimation Technique Maximum Likelihood
> Likelihood Approximation Laplace
> Degrees of Freedom Method Containment
>
>
>
> Optimization Information
>
> Optimization Technique Dual Quasi-Newton
> Parameters in Optimization 5
> Lower Boundaries 1
> Upper Boundaries 0
> Fixed Effects Not Profiled
> Starting From GLM estimates
>
> Convergence criterion (GCONV=1E-8) satisfied.
>
> Fit Statistics
>
> -2 Log Likelihood 1653.90 <------------------
> this
> line!!
> AIC (smaller is better) 1663.90
> AICC (smaller is better) 1664.33
> BIC (smaller is better) 1673.25
> CAIC (smaller is better) 1678.25
> HQIC (smaller is better) 1667.43
>
>
> Fit Statistics for Conditional Distribution
>
> -2 log L(SdlFinal | r. effects) 1436.44
> Pearson Chi-Square 908.07
> Pearson Chi-Square / DF 6.31
>
>
> Covariance Parameter Estimates
>
> Cov Standard Z
> Parm Estimate Error Value Pr > Z
>
> ID 1.2491 0.2746 4.55 <.0001
>
>
> Solutions for Fixed Effects
>
> Standard
> Effect Estimate Error DF t Value Pr > |t|
>
> Intercept 4.5696 0.4333 47 10.55 <.0001
> lnsdlmaxd -0.6594 0.05717 93 -11.53 <.0001
> lnadultssdld -0.6453 0.1593 93 -4.05 0.0001
> lnsdlmaxd*lnadultssd0.07394 0.02174 93 3.40 0.0010
>
> _______________________________________________
> R-sig-mixed-models at r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models
>
> _______________________________________________
> R-sig-mixed-models at r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models
>
More information about the R-sig-mixed-models
mailing list