[R-sig-ME] nplmreg and overdispersed distributions
David Duffy
davidD at qimr.edu.au
Tue Jun 29 09:11:41 CEST 2010
On Fri, 25 Jun 2010, David Atkins wrote:
>
>> summary(drk.glmer)
> Generalized linear mixed model fit by the Laplace approximation
> Formula: drinks ~ weekday * gender + (1 | id) + (1 | over)
> Data: drink.df
> AIC BIC logLik deviance
> 73662 73805 -36815 73630
> Random effects:
> Groups Name Variance Std.Dev.
> over (Intercept) 18.953746 4.35359
> id (Intercept) 0.035047 0.18721
> Number of obs: 56199, groups: over, 56199; id, 980
>
> Fixed effects:
> Estimate Std. Error z value Pr(>|z|)
> (Intercept) -5.44079 0.15315 -35.53 < 2e-16 ***
> weekdayMonday -0.10165 0.22164 -0.46 0.64651
> weekdayTuesday -0.02491 0.21837 -0.11 0.90919
> weekdayWednesday -0.07211 0.22089 -0.33 0.74408
> weekdayThursday 0.51327 0.19953 2.57 0.01010 *
> weekdayFriday 1.65032 0.17918 9.21 < 2e-16 ***
> weekdaySaturday 1.51045 0.18023 8.38 < 2e-16 ***
> genderM 0.13300 0.22493 0.59 0.55432
> weekdayMonday:genderM 0.43511 0.31295 1.39 0.16442
> weekdayTuesday:genderM 0.35643 0.31078 1.15 0.25142
> weekdayWednesday:genderM 0.38299 0.31327 1.22 0.22150
> weekdayThursday:genderM 0.60046 0.28439 2.11 0.03474 *
> weekdayFriday:genderM 1.26700 0.25845 4.90 9.48e-07 ***
> weekdaySaturday:genderM 0.79712 0.26107 3.05 0.00226 **
> ---
>
I played around using the nplmreg package for these data:
x <- read.table("atkinsdrinking.dat",h=T)
x$id <- factor(x$id)
x$weekday <- factor(x$weekday)
library(npmlreg)
w1 <- allvc(drinks ~ weekday * gender, random=~1|id,
data=x, k=3, family=poisson())
w2 <- allvc(drinks ~ weekday * gender, random=~1|id,
data=x, k=4, family=poisson())
w3 <- allvc(drinks ~ weekday * gender, random=~1|id,
data=x, k=5, family=poisson())
summary(w3)
Call: allvc(formula = drinks ~ weekday * gender, random = ~1 | id,
family = poisson(), data = x, k = 5)
Coefficients:
Estimate Std. Error t value
weekday2 -0.01078244 0.03327762 -0.3240146
weekday3 0.02648464 0.03300293 0.8024937
weekday4 -0.01053878 0.03337888 -0.3157319
weekday5 0.50105222 0.02972589 16.8557542
weekday6 1.12753214 0.02687809 41.9498558
weekday7 1.06078775 0.02706839 39.1891739
genderM 0.37350999 0.03174335 11.7665577
weekday2:genderM 0.36926108 0.04355992 8.4770837
weekday3:genderM 0.29559643 0.04353879 6.7892661
weekday4:genderM 0.36289380 0.04373133 8.2982575
weekday5:genderM 0.45263084 0.03909019 11.5791429
weekday6:genderM 0.40175135 0.03582774 11.2134145
weekday7:genderM 0.29630811 0.03621084 8.1828555
MASS1 -2.65406245 0.03205365 -82.8006201
MASS2 -1.58730489 0.02522484 -62.9262717
MASS3 -0.83696785 0.02427729 -34.4753395
MASS4 -0.20183478 0.02463629 -8.1925804
MASS5 0.42940967 0.02434547 17.6381755
Mixture proportions:
MASS1 MASS2 MASS3 MASS4 MASS5
0.19720118 0.31780163 0.27323454 0.12845641 0.08330624
Random effect distribution - standard deviation: 0.9206557
-2 log L: 184333.2 Convergence at iteration 76
This is not too slow, though worsening as the number of components
increasing (looking at the likelihoods, I might still need a few more
components).
another 2c,
David Duffy.
--
| David Duffy (MBBS PhD) ,-_|\
| email: davidD at qimr.edu.au ph: INT+61+7+3362-0217 fax: -0101 / *
| Epidemiology Unit, Queensland Institute of Medical Research \_,-._/
| 300 Herston Rd, Brisbane, Queensland 4029, Australia GPG 4D0B994A v
More information about the R-sig-mixed-models
mailing list