[R-sig-ME] lme posthoc constrasts for interaction effects group*time

Nicholas Lewin-Koh nikko at hailmail.net
Fri Jun 18 18:27:17 CEST 2010


Hi,
Try 
library(multcomp)
test<-glht(model,lin=mcp(group="Tukey"))
confint(test)

However, that just tests the marginal effect of group. 
With interactions you want to test over time, probably a simultaneous
interval.
This will get you close:
library(contrast)
ctt<-contrast(model, a=list( day=c(0,3,7,21,49), group=c(Small Stroke",
"Large Stroke")),
              b=list(day=c(0,3,7,21,49), group=c("Control", "Control")))
## Extract the contrast matrix
cmtrx <- ctt$X

## Fit the contrasts using glht
ttgl<-glht(model,lin=cmtrx)

confint(ttgl)

hope this helps.
And do read the vignette in multcomp  :)

Nicholas


> Message: 2
> Date: Thu, 17 Jun 2010 14:51:21 +0200
> From: Chris Kleier <chris.kleier at gmail.com>
> To: R sig-mixed-models <r-sig-mixed-models at r-project.org>
> Subject: [R-sig-ME] lme posthoc constrasts for interaction effects
> 	group*time
> Message-ID:
> 	<AANLkTilMkK9HJZqXDZimDzKCswXElxw__dUVQpSnW8FQ at mail.gmail.com>
> Content-Type: text/plain
> 
> Hi all,
> 
> Our dataset is a repeated measures design including 3 groups (a)
> Controls,
> (b) Small stroke and (c) Large stroke. We want to know if the group
> behave
> different over time.
> 
> We first fitted a lme with fixed = group * time (see below).
> Their was a significant interaction effect (see below as well; p < 0.05)
> 
> In the next step we want to know which groups have significant
> interactions
> (Control - Stroke large, Control - Stroke small, Stroke small - Stroke
> large), and their p-values + CIs.
> 
> A posthoc Tukey, I think is fine. However, I do not know how to setup the
> constrast matrix.
> 
> These are the contrast names ( names( coef( model ) ) ):
> "(Intercept)", "groupStroke large", "groupStroke small", "time",
> "groupStroke large:time" "groupStroke small:time"
> 
> I guess, the model has to be refitted to get a contrast for
> "groupControl:time" as well, but I do not know how.
> 
> Any solution known? (Probabily something in the direction of: model.2 <-
> update( model, fixed = 0 + group * time ) )
> 
> Thanks!
> 
> Chris
> 
> 
> 
> 
> 
> This is a print of the dataset:
> 
>     subject        group       value day
> 1       N03 Stroke small  0.47545500   0
> 2       N04 Stroke small  0.38866500   0
> 3       N19 Stroke small  0.64749800   0
> 4       N20 Stroke small  0.50468600   0
> 5       N22 Stroke small  0.55872300   0
> 6       N03 Stroke small  0.01979970   3
> 7       N04 Stroke small  0.05607250   3
> 8       N19 Stroke small -0.04506370   3
> 9       N20 Stroke small -0.33935400   3
> 10      N22 Stroke small  0.22052700   3
> 11      N03 Stroke small  0.29805300   7
> 12      N04 Stroke small -0.24908100   7
> 13      N19 Stroke small -0.02657290   7
> 14      N20 Stroke small -0.19483200   7
> 15      N22 Stroke small  0.50948000   7
> 16      N03 Stroke small  0.13056600  21
> 17      N04 Stroke small  0.33759500  21
> 18      N19 Stroke small  0.14929200  21
> 19      N20 Stroke small  0.25033100  21
> 20      N22 Stroke small  0.71456800  21
> 21      N03 Stroke small  0.39007100  49
> 22      N04 Stroke small  0.33254400  49
> 23      N19 Stroke small  0.27767600  49
> 24      N20 Stroke small  0.33467500  49
> 25      N22 Stroke small  0.52203500  49
> 26      N03 Stroke small  0.29851100  70
> 27      N04 Stroke small  0.50900200  70
> 28      N19 Stroke small  0.51781700  70
> 29      N20 Stroke small  0.69543700  70
> 30      N22 Stroke small  0.49337000  70
> 31      N01 Stroke large          NA   0
> 32      N07 Stroke large  0.54930600   0
> 33      N09 Stroke large  0.59703600   0
> 34      N10 Stroke large  0.72751400   0
> 35      N17 Stroke large  0.63878400   0
> 36      N23 Stroke large  0.65749100   0
> 37      N24 Stroke large  0.60945900   0
> 38      N28 Stroke large          NA   0
> 39      N01 Stroke large -0.31610900   3
> 40      N07 Stroke large -0.33615700   3
> 41      N09 Stroke large -0.24906400   3
> 42      N10 Stroke large  0.33868700   3
> 43      N17 Stroke large -0.31357300   3
> 44      N23 Stroke large -0.13162800   3
> 45      N24 Stroke large -0.45343700   3
> 46      N28 Stroke large -0.18206700   3
> 47      N01 Stroke large -0.05309070   7
> 48      N07 Stroke large -0.83318300   7
> 49      N09 Stroke large -0.49667100   7
> 50      N10 Stroke large -0.48083200   7
> 51      N17 Stroke large -0.28447000   7
> 52      N23 Stroke large  0.01842660   7
> 53      N24 Stroke large -0.50464400   7
> 54      N28 Stroke large  0.16456100   7
> 55      N01 Stroke large  0.24652600  21
> 56      N07 Stroke large -0.31566500  21
> 57      N09 Stroke large  0.39618900  21
> 58      N10 Stroke large -0.30702200  21
> 59      N17 Stroke large -0.28860100  21
> 60      N23 Stroke large -0.23851000  21
> 61      N24 Stroke large -0.00913697  21
> 62      N28 Stroke large  0.43462600  21
> 63      N01 Stroke large -0.20660100  49
> 64      N07 Stroke large -0.13044900  49
> 65      N09 Stroke large  0.24625000  49
> 66      N10 Stroke large -0.28206200  49
> 67      N17 Stroke large  0.29186400  49
> 68      N23 Stroke large -0.14246600  49
> 69      N24 Stroke large -0.11297700  49
> 70      N28 Stroke large  0.32027300  49
> 71      N01 Stroke large -0.00106427  70
> 72      N07 Stroke large -0.17264000  70
> 73      N09 Stroke large  0.26417500  70
> 74      N10 Stroke large -0.11202200  70
> 75      N17 Stroke large  0.16687700  70
> 76      N23 Stroke large -0.24308300  70
> 77      N24 Stroke large  0.00322026  70
> 78      N28 Stroke large  0.34928100  70
> 79      C01      Control          NA   0
> 80      C02      Control          NA   0
> 81      C03      Control          NA   0
> 82      C04      Control          NA   0
> 83      C05      Control          NA   0
> 84      C06      Control          NA   0
> 85      C07      Control          NA   0
> 86      C09      Control          NA   0
> 87      C10      Control          NA   0
> 88      C32      Control          NA   0
> 89      C01      Control  0.32387500   3
> 90      C02      Control  0.48334200   3
> 91      C03      Control  0.70698800   3
> 92      C04      Control  0.00572262   3
> 93      C05      Control  0.40416000   3
> 94      C06      Control  0.36343800   3
> 95      C07      Control  0.05064140   3
> 96      C09      Control  0.84621500   3
> 97      C10      Control  0.80675300   3
> 98      C32      Control          NA   3
> 99      C01      Control  0.23174400   7
> 100     C02      Control  0.36959100   7
> 101     C03      Control  0.43762800   7
> 102     C04      Control  0.34187100   7
> 103     C05      Control  0.74288400   7
> 104     C06      Control  0.17692600   7
> 105     C07      Control  0.60067600   7
> 106     C09      Control  0.80314900   7
> 107     C10      Control  0.81695500   7
> 108     C32      Control  0.19029400   7
> 109     C01      Control  0.45062600  21
> 110     C02      Control  0.62884500  21
> 111     C03      Control  0.33693200  21
> 112     C04      Control  0.76098800  21
> 113     C05      Control  0.59837500  21
> 114     C06      Control  0.39328800  21
> 115     C07      Control  0.55099400  21
> 116     C09      Control  0.75411500  21
> 117     C10      Control  0.72495100  21
> 118     C32      Control  0.66503400  21
> 119     C01      Control  0.63903900  49
> 120     C02      Control          NA  49
> 121     C03      Control  0.59655200  49
> 122     C04      Control  0.42958700  49
> 123     C05      Control  0.68408700  49
> 124     C06      Control  0.45482700  49
> 125     C07      Control  0.37217700  49
> 126     C09      Control  0.75770400  49
> 127     C10      Control  0.62059200  49
> 128     C32      Control  0.68320900  49
> 129     C01      Control  0.66179300  70
> 130     C02      Control  0.34183000  70
> 131     C03      Control  0.58543900  70
> 132     C04      Control  0.62621700  70
> 133     C05      Control  0.40610400  70
> 134     C06      Control  0.32596100  70
> 135     C07      Control  0.14847100  70
> 136     C09      Control  0.79177000  70
> 137     C10      Control  0.71970900  70
> 138     C32      Control  0.56702700  70
> 
> This is our model:
> 
> model <- lme( na.action = na.omit, data = data, fixed = value ~ group *
> time, random = ~1 | subject, correlation = corCAR1( form = ~time |
> subject )
> )
> 
> 
> 
> anova( model )
> 
>             numDF denDF  F-value p-value
> (Intercept)     1    87 59.08836  <.0001
> group           2    20 34.50706  <.0001
> time            1    87 19.45032  <.0001
> group:time      2    87  4.53603  0.0134
> 
> 
> 
> intervals( model )
> 
> Approximate 95% confidence intervals
> 
>  Fixed effects:
>                                lower          est.        upper
> (Intercept)             0.3677066515  0.4905816494  0.613456647
> groupStroke large      -0.9027833601 -0.7106686760 -0.518553992
> groupStroke small      -0.6705657199 -0.4490365094 -0.227507299
> time                   -0.0013629996  0.0009963115  0.003355623
> groupStroke large:time -0.0003754957  0.0031296769  0.006634850
> groupStroke small:time  0.0019261801  0.0059657552  0.010005330
> attr(,"label")
> [1] "Fixed effects:"
> 
>  Random Effects:
>   Level: subject
>                      lower      est.     upper
> sd((Intercept)) 0.07377088 0.1227132 0.2041257
> 
>  Correlation structure:
>         lower      est.     upper
> Phi 0.2035765 0.5971507 0.8957905
> attr(,"label")
> [1] "Correlation structure:"
> 
>  Within-group standard error:
>     lower      est.     upper
> 0.1779472 0.2071400 0.2411220
> 
> 	[[alternative HTML version deleted]]
> 
> 
> 
> ------------------------------
> 
> _______________________________________________
> R-sig-mixed-models mailing list
> R-sig-mixed-models at r-project.org
> https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models
> 
> 
> End of R-sig-mixed-models Digest, Vol 42, Issue 22
> **************************************************
>




More information about the R-sig-mixed-models mailing list