[R-sig-ME] Significance and lmer
Adam D. I. Kramer
adik at ilovebacon.org
Sat Mar 27 00:51:48 CET 2010
Dear colleagues,
Please consider this series of commands:
a <- lmer(log(stddiff+.1539) ~ pred + m*v + option + (option|studyID),
data=r1, subset=option>1, REML=FALSE)
b <- update(a, . ~ . - pred)
anova(a,b)
...am I mistaken in thinking that the latter command will produce a test of
whether "pred" is a significant predictor of log(stddiff+.1539)? I am
concerned because of the results:
> coef(a)
Estimate Std. Error t value
(Intercept) -0.6608993664 0.1591862808 -4.1517357
pred 0.0879255592 0.1715599954 0.5125062
ml 0.0656916428 0.1173308419 0.5598838
vl -0.0980204413 0.1276648229 -0.7677952
option 0.0003197903 0.0008134259 0.3931400
ml:vl -0.1890574941 0.1710443092 -1.1053130
...note a t-value of 0.51 for this item...very small! ...but anova(a,b) produces this:
Models:
b: log(stddiff + 0.1539) ~ m + v + option + (option | studyID) +
b: m:v
a: log(stddiff + 0.1539) ~ pred + m * v + option + (option | studyID)
Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)
b 9 3969.2 4019.1 -1975.6
a 10 3955.9 4011.2 -1967.9 15.345 1 8.954e-05 ***
---
...a significant result completely unrelated to the t-value. My
interpretation of this would be that we have no good evidence that the
estimate for 'pred' is nonzero, but including pred in the model improves
prediction.
I think I must be missing something here--I would appreciate anyone's input
on what that "something" is.
Cordially,
--
Adam D. I. Kramer
Ph.D. Candidate, Social Psychology
University of Oregon
adik-rhelp at ilovebacon.org
More information about the R-sig-mixed-models
mailing list