[R-sig-ME] Correlation of -1: is it a problem?
Douglas Bates
bates at stat.wisc.edu
Fri Mar 26 20:06:52 CET 2010
On Fri, Mar 26, 2010 at 1:18 PM, Eric Castet
<Eric.Castet at incm.cnrs-mrs.fr> wrote:
> Dear all,
>
> I would be grateful if you could help me with the following question
> using lmer()
> I want to test the effect of a categorical factor with two levels
> (called 'couleurs')
> The only random factor is 'nom'.
>
> I first start with all random effects (I only report the lines for the
> random effects):
> Linear mixed model fit by maximum likelihood
> Formula: lRT ~ couleurs + (1 + couleurs | nom)
> Random effects:
> Groups Name Variance Std.Dev. Corr
> nom (Intercept) 0.1376693 0.371038
> couleurs1 0.0030358 0.055098 *-1.000 *
> Residual 0.5118424 0.715432
> Number of obs: 7927, groups: nom, 10
>
>
> Then, I remove the random effect of 'couleurs' with the following result:
>
> Linear mixed model fit by maximum likelihood
> Formula: lRT ~ couleurs + (1 | nom)
> Data: jb
>
> Random effects:
> Groups Name Variance Std.Dev.
> nom (Intercept) 0.11768 0.34304
> Residual 0.51263 0.71598
> Number of obs: 7927, groups: nom, 10
>
> I then compare the two models and see that I should go with the first
> model Df=6:
> > anova (jb.lmer1, jb.lmer2)
> Data: jb
> Models:
> jb.lmer2: lRT ~ couleurs + (1 | nom)
> jb.lmer1: lRT ~ couleurs + (1 + couleurs | nom)
> Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)
> jb.lmer2 4 17259 17287 -8625.4
> jb.lmer1 6 17251 17293 -8619.4 12.078 2 0.002384 **
> My questions are the following:
> a/ is it really a statistical (or numerical) problem to have a -1
> correlation in the model that I should keep?
Yes, it is. The fitted model is has a singular variance-covariance
matrix for the random effects and that is not good. In fact, it is no
longer a linear mixed model.
> b/ is it possible to remove the correlation between Intercept and
> Couleurs, as I would do if Couleurs were not a categorical factor?
I would fit another model of
IRT ~ couleurs + (1|nom:couleurs) + (1|nom)
and see how that works. This model is, in some sense, intermediate to
the models that you have fit above.
>
> Thanks in advance,
>
> Eric Castet
>
>
>
>
> --
>
> Eric Castet
>
> Institut de Neurosciences Cognitives de la Méditerranée -- INCM CNRS
>
> 31 chemin Joseph Aiguier
>
> 13402 Marseille cedex 20 (France)
>
> tel : (+33)(0)4-91-16-43-34
>
> fax : (+33) (0)4-91-16-44-98
>
> UMR 6193 du CNRS
>
> Université Aix-Marseille II
>
> http://www.incm.cnrs-mrs.fr/equipedyva.php
>
> http://www.incm.cnrs-mrs.fr/pperso/ecastet.php
>
>
>
>
> [[alternative HTML version deleted]]
>
>
> _______________________________________________
> R-sig-mixed-models at r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models
>
>
More information about the R-sig-mixed-models
mailing list