[R-sig-ME] Model building problem?

Luciano La Sala lucianolasala at yahoo.com.ar
Sat Mar 13 23:07:56 CET 2010


Hello everyone, 

I am building a model using the “lmer” function. I have IgG (continuous) as my outcome of interest, and the following variables as fixed effects: Egg Breadth (continuous), Egg Length (continuous), EggVolume (continuous), Clutch Size (three levels), and Hatching Order (three levels), plus random intercepts for NestID.  

In model selection, terms were eliminated from a maximum model (with random intercept) to achieve a simpler model that retained only the significant main effects and interactions, using the Akaike information criterion. 

At each step of model reduction, I look at the p-values of coefficients and decide which variable to eliminate next, re-fit the model and then I compare AIC values to decide whether the new model is a better fit for my data or not.  

To my dismay, the best model is the one containing only the random intercept. 

Stepwise variable elimination reduces AIC (see output) despite low p-values for the coefficients of the variables dropped! I would think that at least some of my variables (not just the random effect) should improve the model fit. It strikes me as very odd that the model with only random intercepts offers the best fit, being that random effect variances is close to zero (see output). 

Q1. Should I stop simplifying my model at Step 2 or 3, where all main effects have p < 0.05? 

Q2. However, AIC keeps dropping thereafter -regardless of significant p values of main effects- until no single main effect is left in the model. This baffles me! 

Q3. Last but not least… where am I going so wrong here?

Thank you very much for whatever help you may give me!     


Here goes a summary of the outputs:

FULL MODEL

Linear mixed model fit by REML 

Formula: ELISA2~EggBreadth+EggLength+ClutchSize+HatchOrder+ EggVolume+(1|NestID) 

    AIC    BIC logLik deviance REMLdev
 -544.1 -511.6  282.1   -632.2  -564.1

Random effects:
 Groups   Name        Variance   Std.Dev.
 NestID   (Intercept) 0.00016440 0.012822
 Residual             0.00207281 0.045528

Number of obs: 191, groups: NestID, 111

Fixed effects:
                      Estimate Std. Error t value  Pr(>|t|)
(Intercept)           3.545249   2.268083   1.563  0.1198
EggBreadth           -0.066974   0.046930  -1.427  0.1553
EggLength            -0.017986   0.016281  -1.105  0.2707
ClutchSizeTwo-eggs    0.009885   0.011652   0.848  0.3974
ClutchSizeThree-eggs -0.014039   0.011518  -1.219  0.2245
HatchOrderSecond      0.015605   0.008245   1.893  0.0600
HatchOrderThird       0.032599   0.011763   2.771  0.0062
EggVolume             0.019498   0.014616   1.334  0.1839
     





BACKWARD 1. Drop Clutch Size

Linear mixed model fit by REML 
Formula: ELISA2~EggBreadth+EggLength+HatchOrder+EggVolume+(1|NestID) 

    AIC    BIC logLik deviance REMLdev
 -556.4 -530.4  286.2   -625.6  -572.4

Random effects:
 Groups   Name        Variance   Std.Dev.
 NestID   (Intercept) 0.00017555 0.013250
 Residual             0.00211661 0.046007
Number of obs: 191, groups: NestID, 111

Fixed effects:
                  Estimate Std. Error t value   Pr(>|t|)
(Intercept)       3.089050   2.281486   1.354   0.1774
EggBreadth       -0.057337   0.047197  -1.215   0.2260
EggLength        -0.013941   0.016351  -0.853   0.3950
HatchOrderSecond  0.014215   0.007875   1.805   0.0727
HatchOrderThird   0.021879   0.010740   2.037   0.0431
EggVolume         0.015693   0.014661   1.070   0.2858


BACKWARD 2. Drop EggLength

Linear mixed model fit by REML 

Formula: ELISA2 ~ EggBreadth + HatchOrder + EggVolume + (1 | NestID) 

Formula: ELISA2 ~ EggBreadth + HatchOrder + EggVolume + (1 | NestID) 
    AIC    BIC logLik deviance REMLdev
 -564.1 -541.3  289.1   -624.8  -578.1

Random effects:
 Groups   Name        Variance   Std.Dev.
 NestID   (Intercept) 0.00015766 0.012556
 Residual             0.00212966 0.046148

Number of obs: 191, groups: NestID, 111

Fixed effects:
                  Estimate Std. Error t value   Pr(>|t|)
(Intercept)       1.148186   0.148751   7.719   0.0000
EggBreadth       -0.017284   0.004517  -3.826   0.0002
HatchOrderSecond  0.014918   0.007848   1.901   0.0588
HatchOrderThird   0.022059   0.010734   2.055   0.0413
EggVolume         0.003230   0.001148   2.813   0.0054


BACKWARD 3. Drop EggBreadth

Linear mixed model fit by REML 

Formula: ELISA2 ~ EggLength + HatchOrder + EggVolume + (1 | NestID) 

    AIC    BIC logLik deviance REMLdev
 -561.2 -538.5  287.6   -624.1  -575.2

Random effects:
 Groups   Name        Variance   Std.Dev.
 NestID   (Intercept) 0.00015423 0.012419
 Residual             0.00214197 0.046281
Number of obs: 191, groups: NestID, 111

Fixed effects:
                   Estimate Std. Error t value   Pr(>|t|)
(Intercept)       0.3196987  0.0912062   3.505   0.0006
EggLength         0.0058330  0.0015671   3.722   0.0003
HatchOrderSecond  0.0149907  0.0078835   1.902   0.0588
HatchOrderThird   0.0219364  0.0107628   2.038   0.0429
EggVolume        -0.0020977  0.0007405  -2.833   0.0051


BACKWARD 4. Drop HatchOrder

Formula: ELISA2 ~ EggBreadth + EggVolume + (1 | NestID) 

Linear mixed model fit by REML 
    AIC    BIC logLik deviance REMLdev
 -577.4 -561.1  293.7   -618.9  -587.4

Random effects:
 Groups   Name        Variance   Std.Dev.
 NestID   (Intercept) 0.00010214 0.010106
 Residual             0.00222943 0.047217

Number of obs: 191, groups: NestID, 111

Fixed effects:
             Estimate Std. Error t value   Pr(>|t|)
(Intercept)  1.084503   0.146243   7.416   0.0000
EggBreadth  -0.014484   0.004371  -3.314   0.0011
EggVolume    0.002409   0.001099   2.193   0.0295


BACKWARD 5. Drop EggVolume

Formula: ELISA2 ~ EggBreadth + (1 | NestID) 

Linear mixed model fit by REML 
    AIC    BIC logLik deviance REMLdev
 -586.5 -573.5  297.2   -614.1  -594.5
Random effects:
 Groups   Name        Variance   Std.Dev.
 NestID   (Intercept) 0.00017172 0.013104
 Residual             0.00221031 0.047014
Number of obs: 191, groups: NestID, 111

Fixed effects:
             Estimate Std. Error t value   Pr(>|t|)   
(Intercept)  0.884482   0.115833   7.636   0.0000
EggBreadth  -0.006443   0.002401  -2.683   0.0079


BACKWARD 6. Drop Egg Breadth

Formula: ELISA2 ~ 1 + (1|NestID) 

Linear mixed model fit by REML 
    AIC    BIC logLik deviance REMLdev
 -591.6 -581.8  298.8     -607  -597.6
Random effects:
 Groups   Name        Variance  Std.Dev.
 NestID   (Intercept) 0.0001917 0.013846
 Residual             0.0022692 0.047636

Number of obs: 191, groups: NestID, 111

Fixed effects:
            Estimate Std. Error t value   Pr(>|t|)
(Intercept) 0.573809   0.003727   153.9   0






      Yahoo! Cocina

Encontra las mejores recetas con Yahoo! Cocina.


http://ar.mujer.yahoo.com/cocina/




More information about the R-sig-mixed-models mailing list