[R-sig-ME] Links to that "slow" lmer example I asked about

Douglas Bates bates at stat.wisc.edu
Wed Oct 7 00:03:19 CEST 2009


I enclose a timing using the currently released lme4 on the same
machine.  You are right - it is considerably slower.  Good thing I'm
working on the next version.  Now I want you all to remember this when
you find out that I've all the internal structures - again!  There's a
reason.

On Tue, Oct 6, 2009 at 4:44 PM, Douglas Bates <bates at stat.wisc.edu> wrote:
> Thanks for providing the data, Paui.  As I said in a private message,
> this helps a lot to be able to discuss a concrete example and I thank
> your colleague for allowing you to provide these.
>
> My initial timing is using the development version of the lme4
> package, the so-called lme4a.  I separated the creation of the
> structures from the actual optimization.  Setup takes about 3 seconds,
> optimization with nlminb about 7 seconds and optimization with bobyqa
> about 3.5 seconds.
>
> This was done on my desktop computer - a dual-core 2.0 GHz AMD64 with
> 4GB of memory.
>
> On Tue, Oct 6, 2009 at 2:57 PM, Paul Johnson <pauljohn32 at gmail.com> wrote:
>> Dear Everybody:
>>
>> I asked a couple of weeks ago about the puzzle that my colleague's
>> linear mixed model can be estimated in HLM6 in 3 seconds, while lmer
>> requires about 50 seconds.  I wondered if that was expected/known.
>>
>> The discussion seemed to end with the conclusion "if you expect us to
>> evaluate that, give us the working example."  Due to a death in my
>> family, I was delayed in responding, but here are the links to the
>> example data and code.
>>
>> The data frame is saved with R's write function
>>
>> http://pj.freefaculty.org/R/MixedModel/myframe.Rdata
>>
>> I believe that is workable on all platforms. That's about 26,000 rows.
>> Variable V33 represents the groups (in this case, country).  The
>> variables are generically named V1-V33.
>>
>> The small simple test program to load the data and estimate the model:
>>
>> http://pj.freefaculty.org/R/MixedModel/replicateMM.R
>>
>> The output I get, which has system.time wrapped around the use of lmer:
>>
>> http://pj.freefaculty.org/R/MixedModel/replicateMM.Rout
>>
>> I get
>> ##  user  system elapsed
>> ##55.448   0.216  55.756
>>
>> Please remember I am not saying that lmer should work faster.  I
>> understand it is capable of estimating models that other programs
>> cannot.  I'm only trying to explain to a user why this one linear
>> model takes more time in lmer than in HLM6.
>>
>> pj
>> --
>> Paul E. Johnson
>> Professor, Political Science
>> 1541 Lilac Lane, Room 504
>> University of Kansas
>>
>> _______________________________________________
>> R-sig-mixed-models at r-project.org mailing list
>> https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models
>>
>
-------------- next part --------------

R version 2.9.2 (2009-08-24)
Copyright (C) 2009 The R Foundation for Statistical Computing
ISBN 3-900051-07-0

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

  Natural language support but running in an English locale

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> ## crude benchmark of speed on numerical linear algebra
> mm <- matrix(rnorm(1000 * 1000), nc = 1000)
> system.time(solve(mm, rnorm(1000)))
   user  system elapsed 
  0.644   0.028   0.715 
> system.time(solve(mm, rnorm(1000)))
   user  system elapsed 
  0.408   0.024   0.461 
> system.time(solve(mm, rnorm(1000)))
   user  system elapsed 
  0.300   0.012   0.318 
> rm(mm)
> 
> 
> load(url("http://pj.freefaculty.org/R/MixedModel/myframe.Rdata"))
> attr(myframe, "terms") <- NULL
> attr(myframe, "na.action") <- NULL
> 
> str(myframe)
'data.frame':	23898 obs. of  33 variables:
 $ V1 : num  5 5 5 3 7 9 9 4 7 9 ...
 $ V2 : num  4 4 4 4 5 2 4 3 4 4 ...
 $ V3 : num  28335 28335 28335 28335 28335 ...
 $ V4 : num  4.78 4.78 4.78 4.78 4.78 ...
 $ V5 : num  2 0 0 1 0 0 0 0 0 0 ...
 $ V6 : num  5 5 3 2 4 2 3 2 4 4 ...
 $ V7 : num  3 1 1 2 1 2 1 2 1 1 ...
 $ V8 : num  2 2 2 4 1 1 1 4 2 1 ...
 $ V9 : num  2 1 2 2 2 2 1 4 2 1 ...
 $ V10: num  1 0 0 0 1 0 1 1 0 1 ...
 $ V11: num  0 0 1 1 0 1 0 0 0 0 ...
 $ V12: num  0 1 0 0 0 0 0 0 0 0 ...
 $ V13: num  0 0 1 0 0 1 0 0 0 0 ...
 $ V14: num  0 0 0 0 0 0 0 0 0 0 ...
 $ V15: num  0 0 0 1 0 0 1 0 0 0 ...
 $ V16: num  0 0 0 0 0 0 0 0 0 0 ...
 $ V17: num  0 0 0 0 0 0 0 0 0 0 ...
 $ V18: num  1 1 1 1 1 1 1 2 2 1 ...
 $ V19: num  0 0 0 0 0 0 1 0 0 0 ...
 $ V20: num  1 0 1 1 1 1 0 0 1 0 ...
 $ V21: num  0 1 0 0 0 0 0 0 0 0 ...
 $ V22: num  0 0 0 0 0 0 0 0 0 0 ...
 $ V23: num  0 0 1 1 1 0 0 0 0 0 ...
 $ V24: num  0 0 0 0 0 0 1 0 0 1 ...
 $ V25: num  0 1 0 0 0 1 0 0 1 0 ...
 $ V26: num  1 0 1 0 1 1 -1 0 1 1 ...
 $ V27: num  0 0 0 0 2 0 1 1 0 1 ...
 $ V28: num  2 1 3 2 2 3 2 1 1 2 ...
 $ V29: num  0 0 0 0 0 0 0 0 0 0 ...
 $ V30: num  0 0 0 0 8 0 3 2 0 4 ...
 $ V31: num  0 0 0 0 10 0 4 3 0 4 ...
 $ V32: num  0 0 0 0 2 0 -1 0 0 1 ...
 $ V33: Factor w/ 25 levels "Austria","Belgium",..: 2 2 2 2 2 2 2 2 2 2 ...
> summary(myframe)
       V1              V2              V3              V4       
 Min.   :3.000   Min.   :2.000   Min.   :10270   Min.   :1.260  
 1st Qu.:5.000   1st Qu.:4.000   1st Qu.:16357   1st Qu.:2.000  
 Median :7.000   Median :4.000   Median :26750   Median :3.930  
 Mean   :6.315   Mean   :4.089   Mean   :23385   Mean   :3.758  
 3rd Qu.:8.000   3rd Qu.:5.000   3rd Qu.:27756   3rd Qu.:5.680  
 Max.   :9.000   Max.   :6.000   Max.   :62298   Max.   :6.530  
                                                                
       V5               V6              V7              V8       
 Min.   :0.0000   Min.   :2.000   Min.   :1.000   Min.   :1.000  
 1st Qu.:0.0000   1st Qu.:2.000   1st Qu.:1.000   1st Qu.:1.000  
 Median :0.0000   Median :4.000   Median :1.000   Median :1.000  
 Mean   :0.4353   Mean   :3.562   Mean   :1.545   Mean   :1.708  
 3rd Qu.:1.0000   3rd Qu.:4.000   3rd Qu.:2.000   3rd Qu.:2.000  
 Max.   :2.0000   Max.   :6.000   Max.   :3.000   Max.   :5.000  
                                                                 
       V9            V10              V11              V12         
 Min.   :1.00   Min.   :0.0000   Min.   :0.0000   Min.   :0.00000  
 1st Qu.:2.00   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.00000  
 Median :2.00   Median :0.0000   Median :0.0000   Median :0.00000  
 Mean   :2.61   Mean   :0.4377   Mean   :0.3108   Mean   :0.01151  
 3rd Qu.:4.00   3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:0.00000  
 Max.   :6.00   Max.   :1.0000   Max.   :1.0000   Max.   :1.00000  
                                                                   
      V13               V14              V15              V16         
 Min.   :0.00000   Min.   :0.0000   Min.   :0.0000   Min.   :0.00000  
 1st Qu.:0.00000   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.00000  
 Median :0.00000   Median :0.0000   Median :0.0000   Median :0.00000  
 Mean   :0.07164   Mean   :0.1809   Mean   :0.1493   Mean   :0.05415  
 3rd Qu.:0.00000   3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.00000  
 Max.   :1.00000   Max.   :1.0000   Max.   :1.0000   Max.   :1.00000  
                                                                      
      V17              V18             V19              V20        
 Min.   :0.0000   Min.   :1.000   Min.   :0.0000   Min.   :0.0000  
 1st Qu.:0.0000   1st Qu.:1.000   1st Qu.:0.0000   1st Qu.:0.0000  
 Median :0.0000   Median :2.000   Median :0.0000   Median :0.0000  
 Mean   :0.1783   Mean   :1.556   Mean   :0.1577   Mean   :0.3507  
 3rd Qu.:0.0000   3rd Qu.:2.000   3rd Qu.:0.0000   3rd Qu.:1.0000  
 Max.   :1.0000   Max.   :2.000   Max.   :1.0000   Max.   :1.0000  
                                                                   
      V21              V22               V23              V24        
 Min.   :0.0000   Min.   :0.00000   Min.   :0.0000   Min.   :0.0000  
 1st Qu.:0.0000   1st Qu.:0.00000   1st Qu.:0.0000   1st Qu.:0.0000  
 Median :0.0000   Median :0.00000   Median :0.0000   Median :0.0000  
 Mean   :0.2678   Mean   :0.07595   Mean   :0.2111   Mean   :0.2652  
 3rd Qu.:1.0000   3rd Qu.:0.00000   3rd Qu.:0.0000   3rd Qu.:1.0000  
 Max.   :1.0000   Max.   :1.00000   Max.   :1.0000   Max.   :1.0000  
                                                                     
      V25              V26                V27              V28       
 Min.   :0.0000   Min.   :-3.00000   Min.   :0.0000   Min.   :1.000  
 1st Qu.:0.0000   1st Qu.: 0.00000   1st Qu.:0.0000   1st Qu.:1.000  
 Median :0.0000   Median : 0.00000   Median :1.0000   Median :2.000  
 Mean   :0.2466   Mean   : 0.08398   Mean   :0.9125   Mean   :1.899  
 3rd Qu.:0.0000   3rd Qu.: 0.00000   3rd Qu.:1.0000   3rd Qu.:2.000  
 Max.   :1.0000   Max.   : 3.00000   Max.   :2.0000   Max.   :3.000  
                                                                     
      V29              V30              V31              V32          
 Min.   :0.0000   Min.   : 0.000   Min.   : 0.000   Min.   :-6.00000  
 1st Qu.:0.0000   1st Qu.: 0.000   1st Qu.: 0.000   1st Qu.: 0.00000  
 Median :0.0000   Median : 3.000   Median : 4.000   Median : 0.00000  
 Mean   :0.3912   Mean   : 3.155   Mean   : 3.679   Mean   : 0.03741  
 3rd Qu.:0.0000   3rd Qu.: 4.000   3rd Qu.: 5.000   3rd Qu.: 0.00000  
 Max.   :4.0000   Max.   :12.000   Max.   :12.000   Max.   : 6.00000  
                                                                      
            V33       
 Slovakia     : 1245  
 CzechRepublic: 1069  
 WGermany     : 1033  
 Denmark      : 1027  
 Spain        : 1019  
 France       : 1018  
 (Other)      :17487  
Warning message:
closing unused connection 3 (gzcon(http://pj.freefaculty.org/R/MixedModel/myframe.Rdata)) 
> ## several variables are binary and probably should be recoded as factors
> sapply(myframe, function(v) length(unique(v)))
 V1  V2  V3  V4  V5  V6  V7  V8  V9 V10 V11 V12 V13 V14 V15 V16 V17 V18 V19 V20 
  7   5  24  24   3   5   3   5   6   2   2   2   2   2   2   2   2   2   2   2 
V21 V22 V23 V24 V25 V26 V27 V28 V29 V30 V31 V32 V33 
  2   2   2   2   2   7   3   3   4   9   9  11  25 
> myframeA <-
+     do.call(data.frame, lapply(myframe,
+                                function(v)
+                                if(length(unique(v)) == 2) factor(v) else v))
> str(myframeA)
'data.frame':	23898 obs. of  33 variables:
 $ V1 : num  5 5 5 3 7 9 9 4 7 9 ...
 $ V2 : num  4 4 4 4 5 2 4 3 4 4 ...
 $ V3 : num  28335 28335 28335 28335 28335 ...
 $ V4 : num  4.78 4.78 4.78 4.78 4.78 ...
 $ V5 : num  2 0 0 1 0 0 0 0 0 0 ...
 $ V6 : num  5 5 3 2 4 2 3 2 4 4 ...
 $ V7 : num  3 1 1 2 1 2 1 2 1 1 ...
 $ V8 : num  2 2 2 4 1 1 1 4 2 1 ...
 $ V9 : num  2 1 2 2 2 2 1 4 2 1 ...
 $ V10: Factor w/ 2 levels "0","1": 2 1 1 1 2 1 2 2 1 2 ...
 $ V11: Factor w/ 2 levels "0","1": 1 1 2 2 1 2 1 1 1 1 ...
 $ V12: Factor w/ 2 levels "0","1": 1 2 1 1 1 1 1 1 1 1 ...
 $ V13: Factor w/ 2 levels "0","1": 1 1 2 1 1 2 1 1 1 1 ...
 $ V14: Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
 $ V15: Factor w/ 2 levels "0","1": 1 1 1 2 1 1 2 1 1 1 ...
 $ V16: Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
 $ V17: Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
 $ V18: Factor w/ 2 levels "1","2": 1 1 1 1 1 1 1 2 2 1 ...
 $ V19: Factor w/ 2 levels "0","1": 1 1 1 1 1 1 2 1 1 1 ...
 $ V20: Factor w/ 2 levels "0","1": 2 1 2 2 2 2 1 1 2 1 ...
 $ V21: Factor w/ 2 levels "0","1": 1 2 1 1 1 1 1 1 1 1 ...
 $ V22: Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
 $ V23: Factor w/ 2 levels "0","1": 1 1 2 2 2 1 1 1 1 1 ...
 $ V24: Factor w/ 2 levels "0","1": 1 1 1 1 1 1 2 1 1 2 ...
 $ V25: Factor w/ 2 levels "0","1": 1 2 1 1 1 2 1 1 2 1 ...
 $ V26: num  1 0 1 0 1 1 -1 0 1 1 ...
 $ V27: num  0 0 0 0 2 0 1 1 0 1 ...
 $ V28: num  2 1 3 2 2 3 2 1 1 2 ...
 $ V29: num  0 0 0 0 0 0 0 0 0 0 ...
 $ V30: num  0 0 0 0 8 0 3 2 0 4 ...
 $ V31: num  0 0 0 0 10 0 4 3 0 4 ...
 $ V32: num  0 0 0 0 2 0 -1 0 0 1 ...
 $ V33: Factor w/ 25 levels "Austria","Belgium",..: 2 2 2 2 2 2 2 2 2 2 ...
> summary(myframeA)
       V1              V2              V3              V4       
 Min.   :3.000   Min.   :2.000   Min.   :10270   Min.   :1.260  
 1st Qu.:5.000   1st Qu.:4.000   1st Qu.:16357   1st Qu.:2.000  
 Median :7.000   Median :4.000   Median :26750   Median :3.930  
 Mean   :6.315   Mean   :4.089   Mean   :23385   Mean   :3.758  
 3rd Qu.:8.000   3rd Qu.:5.000   3rd Qu.:27756   3rd Qu.:5.680  
 Max.   :9.000   Max.   :6.000   Max.   :62298   Max.   :6.530  
                                                                
       V5               V6              V7              V8       
 Min.   :0.0000   Min.   :2.000   Min.   :1.000   Min.   :1.000  
 1st Qu.:0.0000   1st Qu.:2.000   1st Qu.:1.000   1st Qu.:1.000  
 Median :0.0000   Median :4.000   Median :1.000   Median :1.000  
 Mean   :0.4353   Mean   :3.562   Mean   :1.545   Mean   :1.708  
 3rd Qu.:1.0000   3rd Qu.:4.000   3rd Qu.:2.000   3rd Qu.:2.000  
 Max.   :2.0000   Max.   :6.000   Max.   :3.000   Max.   :5.000  
                                                                 
       V9       V10       V11       V12       V13       V14       V15      
 Min.   :1.00   0:13438   0:16470   0:23623   0:22186   0:19575   0:20330  
 1st Qu.:2.00   1:10460   1: 7428   1:  275   1: 1712   1: 4323   1: 3568  
 Median :2.00                                                              
 Mean   :2.61                                                              
 3rd Qu.:4.00                                                              
 Max.   :6.00                                                              
                                                                           
 V16       V17       V18       V19       V20       V21       V22      
 0:22604   0:19636   1:10600   0:20129   0:15517   0:17497   0:22083  
 1: 1294   1: 4262   2:13298   1: 3769   1: 8381   1: 6401   1: 1815  
                                                                      
                                                                      
                                                                      
                                                                      
                                                                      
 V23       V24       V25            V26                V27        
 0:18853   0:17560   0:18004   Min.   :-3.00000   Min.   :0.0000  
 1: 5045   1: 6338   1: 5894   1st Qu.: 0.00000   1st Qu.:0.0000  
                               Median : 0.00000   Median :1.0000  
                               Mean   : 0.08398   Mean   :0.9125  
                               3rd Qu.: 0.00000   3rd Qu.:1.0000  
                               Max.   : 3.00000   Max.   :2.0000  
                                                                  
      V28             V29              V30              V31        
 Min.   :1.000   Min.   :0.0000   Min.   : 0.000   Min.   : 0.000  
 1st Qu.:1.000   1st Qu.:0.0000   1st Qu.: 0.000   1st Qu.: 0.000  
 Median :2.000   Median :0.0000   Median : 3.000   Median : 4.000  
 Mean   :1.899   Mean   :0.3912   Mean   : 3.155   Mean   : 3.679  
 3rd Qu.:2.000   3rd Qu.:0.0000   3rd Qu.: 4.000   3rd Qu.: 5.000  
 Max.   :3.000   Max.   :4.0000   Max.   :12.000   Max.   :12.000  
                                                                   
      V32                      V33       
 Min.   :-6.00000   Slovakia     : 1245  
 1st Qu.: 0.00000   CzechRepublic: 1069  
 Median : 0.00000   WGermany     : 1033  
 Mean   : 0.03741   Denmark      : 1027  
 3rd Qu.: 0.00000   Spain        : 1019  
 Max.   : 6.00000   France       : 1018  
                    (Other)      :17487  
> 
> if (require(lme4a, quietly = TRUE)) {
+     ## Separate the setup time from the actual optimization time
+     cat ("Setup time\n\n")
+     print(system.time(fm1 <- lmer (V1 ~ V2*V3 + V4*V5 + V6*V5  + V7 + V8 +
+                                    V9 + V10 + V11 + V12 + V13 + V14 + V15 +
+                                    V16 + V17 + V18 + V19 + V20 + V21 + V22 +
+                                    V23 + V24 + V25  + V26 + V27 + V28 + V29 +
+                                    V30 + V31 + V32 +  (1 | V33) +
+                                    (0 + V6 | V33) + (0 + V2 | V33) +
+                                    (0 + V5 | V33) + (0 + V26 | V33),
+                                    data=myframe, doFit = FALSE)
+                 ))
+     cat("\nOptimization timings with nlminb\n\n")
+     ## optimize with nlminb
+     print(system.time(nlminb(c(1,1,1,1,1), fm1 at setPars, lower = c(0,0,0,0,0),
+                        control = list(trace = 1))))
+     ## replicate the timing
+     print(system.time(nlminb(c(1,1,1,1,1), fm1 at setPars, lower = c(0,0,0,0,0))))
+     print(system.time(nlminb(c(1,1,1,1,1), fm1 at setPars, lower = c(0,0,0,0,0))))
+     if (require(minqa)) {
+         ## optimize with bobyqa
+         cat("\nOptimization timings with bobyqa\n\n")
+         print(system.time(bobyqa(c(1,1,1,1,1), fm1 at setPars,
+                                  lower = c(0,0,0,0,0),
+                                  control = list(iprint = 2))))
+         print(system.time(bobyqa(c(1,1,1,1,1), fm1 at setPars,
+                                  lower = c(0,0,0,0,0))))
+         print(system.time(bobyqa(c(1,1,1,1,1), fm1 at setPars,
+                                  lower = c(0,0,0,0,0))))
+     }
+     print(fm1, corr = FALSE)
+ } else {
+     if (require(lme4)) {
+         print(system.time(fm1 <- lmer (V1 ~ V2*V3 + V4*V5 + V6*V5  + V7 + V8 +
+                                        V9 + V10 + V11 + V12 + V13 + V14 + V15 +
+                                        V16 + V17 + V18 + V19 + V20 + V21 + V22 +
+                                        V23 + V24 + V25  + V26 + V27 + V28 + V29 +
+                                        V30 + V31 + V32 +  (1 | V33) +
+                                        (0 + V6 | V33) + (0 + V2 | V33) +
+                                        (0 + V5 | V33) + (0 + V26 | V33),
+                                        myframe)))
+         print(system.time(fm1 <- lmer (V1 ~ V2*V3 + V4*V5 + V6*V5  + V7 + V8 +
+                                        V9 + V10 + V11 + V12 + V13 + V14 + V15 +
+                                        V16 + V17 + V18 + V19 + V20 + V21 + V22 +
+                                        V23 + V24 + V25  + V26 + V27 + V28 + V29 +
+                                        V30 + V31 + V32 +  (1 | V33) +
+                                        (0 + V6 | V33) + (0 + V2 | V33) +
+                                        (0 + V5 | V33) + (0 + V26 | V33),
+                                        myframe)))
+         print(system.time(fm1 <- lmer (V1 ~ V2*V3 + V4*V5 + V6*V5  + V7 + V8 +
+                                        V9 + V10 + V11 + V12 + V13 + V14 + V15 +
+                                        V16 + V17 + V18 + V19 + V20 + V21 + V22 +
+                                        V23 + V24 + V25  + V26 + V27 + V28 + V29 +
+                                        V30 + V31 + V32 +  (1 | V33) +
+                                        (0 + V6 | V33) + (0 + V2 | V33) +
+                                        (0 + V5 | V33) + (0 + V26 | V33),
+                                        myframe)))
+     }
+ }
Loading required package: lme4
Loading required package: Matrix
Loading required package: lattice

Attaching package: 'Matrix'


	The following object(s) are masked from package:stats :

	 contr.helmert,
	 contr.poly,
	 contr.SAS,
	 contr.sum,
	 contr.treatment,
	 xtabs 


	The following object(s) are masked from package:base :

	 rcond 

   user  system elapsed 
 48.699   0.168  49.904 
   user  system elapsed 
 47.963   0.148  49.180 
   user  system elapsed 
 45.062   0.040  46.258 
Warning message:
In library(package, lib.loc = lib.loc, character.only = TRUE, logical.return = TRUE,  :
  there is no package called 'lme4a'
> sessionInfo()
R version 2.9.2 (2009-08-24) 
x86_64-pc-linux-gnu 

locale:
LC_CTYPE=en_US.UTF-8;LC_NUMERIC=C;LC_TIME=en_US.UTF-8;LC_COLLATE=en_US.UTF-8;LC_MONETARY=C;LC_MESSAGES=en_US.UTF-8;LC_PAPER=en_US.UTF-8;LC_NAME=C;LC_ADDRESS=C;LC_TELEPHONE=C;LC_MEASUREMENT=en_US.UTF-8;LC_IDENTIFICATION=C

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] lme4_0.999375-32   Matrix_0.999375-31 lattice_0.17-25   

loaded via a namespace (and not attached):
[1] grid_2.9.2
> 
> proc.time()
   user  system elapsed 
158.413   0.720 163.360 


More information about the R-sig-mixed-models mailing list