[R-sig-ME] MCMCglmm Bivariate Binary Model
Julien Martin
julien.martin2 at usherbrooke.ca
Thu Jul 23 14:18:03 CEST 2009
Hi Chuck
I think you need to fix residual variance and covariance to 1 and 0 for
both traits because they are both binary traits. With your actual prior,
you fix it only for the second trait.
So I think it should work with
prior = list(R = list(V = diag(2), n = 0, fix = 1),
G = list(G1 = list(V = diag(2), n = 1)))
Hope this would work
Sincerely
Julien
--
Julien Martin, Ph.D. Candidate
Université de Sherbrooke
Sherbrooke, Qc
J1A 2R1
Canada
> Date: Wed, 22 Jul 2009 15:13:00 -0400
> From: Chuck Cleland <ccleland at optonline.net>
> Subject: [R-sig-ME] MCMCglmm Bivariate Binary Model
> To: r-sig-mixed-models at r-project.org
> Message-ID: <4A6764BC.8080106 at optonline.net>
> Content-Type: text/plain; charset=ISO-8859-1
>
> Hi All,
>
> I attempted to fit a bivariate binary model similar to the example in
> the Tutorial:
>
> prior = list(R = list(V = diag(2), n = 0, fix = 2),
> G = list(G1 = list(V = diag(2), n = 1)))
>
> model5 <- MCMCglmm(cbind(ANYHR, ANYPO) ~ trait - 1, random =
> ~us(trait):PROGRAM, rcov = ~idh(trait):units, family=c("categorical",
> "categorical"), data = radars, prior = prior, verbose = FALSE)
>
> Error in MCMCglmm(cbind(ANYHR, ANYPO) ~ trait - 1, random =
> ~us(trait):PROGRAM, :
> ill-conditioned G/R structure: use proper priors if you haven't or
> rescale data if you have
>
> In this dataset, one of the four cells in the 2x2 table is empty:
>
> Cell Contents
> |-------------------------|
> | Count |
> |-------------------------|
>
> Total Observations in Table: 21335
>
> | ANYPO
> ANYHR | 0 | 1 | Row Total |
> -------------|-----------|-----------|-----------|
> 0 | 0 | 8999 | 8999 |
> -------------|-----------|-----------|-----------|
> 1 | 6458 | 5878 | 12336 |
> -------------|-----------|-----------|-----------|
> Column Total | 6458 | 14877 | 21335 |
> -------------|-----------|-----------|-----------|
>
> Is there a way to change the specification for prior to make this work?
>
> thanks,
>
> Chuck
>
More information about the R-sig-mixed-models
mailing list