[R-sig-ME] Differing variable lengths (missing data) and Model errors in lmer()

A Singh Aditi.Singh at bristol.ac.uk
Thu Jul 9 18:52:46 CEST 2009


Dear All,

I am trying to run a nested random effects model in lmer (for R 2.9.1, lme4 
version 0.999375-31 ) using data which is structured as follows:

family offsp. P1L74 P1L77 P1L91 P1L96..(n=426) peg.no ec.length  syll.length
1   	 2      1	  0	  0	  0	            86	5.445	     2.479
1   	 3      1	  0	  0	  0	    		91	5.215	     2.356
1   	 4      0	  0	  0	  0	    	      79	5.682	     2.896
1   	 5      1	  0	  0	  0	   		83	5.149	     2.641
1   	 6      0	  0	  0	  0	    		77	5.044	     2.288
1   	 7      1	  0	  0	  0	    	      78	5.450	     2.420
1   	 8      1	  0	  1	  1	    		82	5.377	     2.505
1   	 9      1	  0	  0	  0	    		95	5.389	     2.706
1   	10      1	  0	  0	  0	    		88	5.354	     2.461
1   	11      1	  0	  0	  0	    		87	5.262	     3.079	
1   	12      1	  0	  0	  0	    		84	5.191	     2.858
1   	13      1	  0	  0	  1	    	      87	5.194	     2.264
2   	23      1	  0	  0	  1	    	      116	5.863	     2.876
2   	24      1	  0	  0	  0	    		122	5.475	     3.114
2   	25      1	  0	  0	  0	    		110	5.563	     3.059
.       .       .   .     .     .               .         .          .
.       .       .   .     .     .               .         .          .
.
.
(60 families)

'Family' is the first Random effect (categorical variable), with 60 levels.

All columns labeled P1L(x) are a matrix of presence/absence genetic markers 
for each individual in each family. There are 426 such columns(not numbered 
in sequence) and each one is a random effect.

The last three columns (peg.no, ec.length and syll.length) are the three 
dependent variables.

Each genetic marker column needs to be nested within each family, which 
means that if I take the first phenotype, peg.no, for example, then I need 
to run an analysis that partitions variance 60*426 times (~25,00 runs) for 
that phenotype.
I also need an output with the Anova table, and summary, at each stage of 
the run, so that I can get P values for each marker for each family, as a 
way of determining whether it contributes significantly to explaining 
within-family variance for that trait.

To do the above, I tried to write code for lmer() using two nested 'for' 
loops, one for each level of random factor nesting (marker within family) 
as follows (using a test data set [please find attached] with only the 
first 10 marker columns, to see if this works):


> vc<-read.table("P:\\R\\Testvcomp10.txt",header=T)
> attach(vc)

> family<-factor(family)
> colms<-(vc)[,4:13] ## this to assign the 10 columns containing marker 
data    to a new variable, as column names are themselves not in any 
recognisable sequence

> vcdf<-data.frame(family,peg.no,ec.length,syll.length,colms)
> library(lme4)

> for (c in levels(family))
+ {    for (i in 1:length(colms))
+        { fit<-lmer(peg.no~1 + (1|c/i), vcdf)
+        }
+    summ<-summary(fit)
+    av<-anova(fit)
+    print(summ)
+    print(av)
+ }

This gives me:

Error in model.frame.default(data = vcdf, formula = peg.no ~ 1 + (1 +  :
  variable lengths differ (found for 'c')



On suggestion from a colleague I reframed this as:


> for(c in levels(family))
+ {
+ print("----New C:----")
+ print(c)
+ for (i in 1:length(colms))
+ {
+ fit<-lmer(peg.no~1+ (1|c/i),vcdf)
+ print(i)
+ summ<-summary(fit)
+ av<-anova(fit)
+ print(summ)
+ print(av)
+ }
+ }

..and this gave me the output:

[1] "----New C:----"
[1] "1"
Error in model.frame.default(data = vcdf, formula = peg.no ~ 1 + (1 +  :
  variable lengths differ (found for 'c')


Google-ing the error message has led me to plenty of links that suggest 
forcing data into a data frame to fix this, but that hasn't worked.
My markers and phenotypes both have plenty of missing data (NA's in the 
data.frame), and na.action=na.omit isn't solving the problem.

(I have tried this with lme, and tried to do it with the aov() command as 
well and the error is pretty much the same).

I am completely new to R, and despite searching and trying various things, 
can't get the code to work.

I really appreciate any corrections to this code, or alternative 
command/function suggestions that I can look into, to try to do this again.


Thanks a bunch for your help,

Aditi


----------------------
A Singh
Aditi.Singh at bristol.ac.uk
School of Biological Sciences
University of Bristol



-------------- next part --------------
male.parent	family	offspring.id	P1L55	P1L73	P1L74	P1L77	P1L91	P1L96	P1L98	P1L100	P1L114	P1L118	peg.no	ec.length	syll.length
1	1	3	0	0	1	0	0	0	1	1	1	0	86	5.445	2.479
1	1	4	0	0	1	0	0	0	1	1	1	0	91	5.215	2.356
1	1	5	0	1	0	0	0	0	1	1	1	0	79	5.682	2.896
1	1	6	0	0	1	0	0	0	1	1	1	0	83	5.149	2.641
1	1	7	0	0	0	0	0	0	1	1	1	0	77	5.044	2.288
1	1	8	0	0	1	0	0	0	1	1	1	0	78	5.450	2.420
1	1	9	0	0	1	0	1	1	1	1	0	0	82	5.377	2.505
1	1	10	0	0	1	0	0	0	1	1	1	0	95	5.389	2.706
1	1	11	0	0	1	0	0	0	1	1	1	0	88	5.354	2.461
1	1	12	0	0	1	0	0	0	1	1	1	1	87	5.262	3.079
1	1	13	0	0	1	0	0	0	1	1	1	0	77	5.219	2.106
1	1	14	0	0	1	0	0	0	1	1	1	0	74	5.464	2.677
1	1	15	0	0	1	0	0	0	1	1	1	0	85	5.230	2.929
1	1	16	0	1	1	0	0	0	1	1	1	0	107	5.609	2.752
1	1	17	0	0	1	0	0	0	1	1	1	0	76	5.306	2.785
1	1	18	0	0	1	0	0	0	1	1	1	0	86	5.306	2.374
1	1	19	0	0	1	0	0	0	1	1	1	0	84	5.191	2.858
1	1	20	0	0	1	0	0	1	1	1	1	0	87	5.194	2.264
21	2	23	0	1	1	0	0	1	1	1	1	0	116	5.863	2.876
21	2	24	0	0	1	0	0	0	1	1	1	0	122	5.475	3.114
21	2	25	0	1	1	0	0	0	1	1	1	0	110	5.563	3.059
21	2	26	1	0	1	0	0	0	1	0	0	0	120	5.723	2.755
21	2	27	0	0	0	0	0	0	0	1	1	0	NA	NA	NA
21	2	28	0	1	1	0	0	1	1	1	1	0	107	5.867	2.473
21	2	29	0	1	1	1	0	0	1	1	1	0	NA	5.956	2.436
21	2	30	0	0	1	0	0	0	1	1	1	0	103	5.601	2.544
21	2	31	1	0	1	0	0	1	1	1	1	0	92	5.768	2.978
21	2	32	0	0	1	0	0	0	1	1	1	0	127	5.710	2.461
21	2	33	0	0	1	0	0	0	1	1	1	0	115	5.697	2.528
21	2	34	0	0	1	1	0	0	1	1	1	0	105	5.743	2.813
21	2	35	0	0	1	0	1	0	1	1	1	1	103	5.745	2.609
21	2	36	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	106	5.901	2.884
21	2	37	0	0	1	1	0	0	1	1	1	0	108	5.639	2.292
21	2	38	0	1	1	0	0	0	1	1	1	0	105	5.588	2.839
21	2	39	0	0	1	0	0	1	1	1	1	0	112	5.543	2.172
21	2	40	0	1	1	0	0	0	1	1	1	0	NA	NA	NA
21	2	41	0	0	1	0	0	1	1	1	1	0	NA	NA	NA
42	3	44	0	0	1	0	0	0	1	0	1	0	107	6.026	2.778
42	3	45	0	0	1	0	0	0	1	1	1	0	91	5.962	2.708
42	3	46	1	0	1	0	0	0	1	1	1	0	82	5.756	2.614
42	3	47	0	0	1	0	0	0	1	1	1	0	92	5.828	2.571
42	3	48	0	0	1	1	0	1	1	1	1	0	80	5.423	2.314
42	3	49	1	0	1	0	0	0	1	1	1	0	82	5.183	2.173
42	3	50	1	0	1	1	0	0	1	1	1	0	90	5.609	2.211
42	3	51	1	0	1	0	0	0	1	1	1	0	92	5.556	2.615
42	3	52	0	0	1	0	0	0	0	0	1	0	99	5.507	2.184
42	3	53	0	0	1	0	0	1	1	1	1	0	NA	NA	NA
54	4	56	0	1	0	0	0	0	1	1	1	0	118	6.380	3.339
54	4	57	0	0	0	0	0	0	1	1	1	0	104	5.919	2.805
54	4	58	0	0	1	0	0	0	1	1	1	0	120	6.183	3.097
54	4	59	0	0	1	0	0	0	1	1	0	0	103	6.414	3.554
54	4	60	0	0	1	0	0	0	1	1	1	0	NA	NA	NA
54	4	61	0	0	0	0	0	0	1	1	0	1	112	5.966	2.814
54	4	62	0	0	0	0	0	1	1	1	1	0	113	6.000	2.724
54	4	63	0	0	1	0	1	0	1	1	1	0	NA	NA	NA
54	4	64	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
65	5	67	0	0	1	0	0	0	1	1	1	0	104	5.602	2.404
65	5	68	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	99	5.683	3.045
65	5	69	1	0	1	0	0	1	1	0	1	0	98	5.979	2.465
65	5	70	0	0	1	0	0	0	1	1	1	0	108	5.936	2.343
65	5	71	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	5.754	2.687
65	5	72	0	0	1	0	0	0	1	1	1	0	NA	NA	NA
65	5	73	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
74	6	76	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
74	6	77	0	0	1	0	0	1	1	1	1	0	110	5.767	3.392
74	6	78	0	0	1	0	0	0	0	0	1	0	99	5.515	2.924
74	6	79	0	0	1	1	0	0	1	1	1	0	93	5.582	2.368
74	6	80	0	0	1	0	0	0	1	1	1	0	104	5.933	2.536
74	6	81	0	0	1	0	0	0	1	1	1	0	98	5.683	3.112
74	6	82	0	0	1	0	0	0	1	1	1	0	97	5.706	2.817
74	6	83	0	0	1	0	0	0	1	1	1	0	113	5.938	2.839
74	6	84	0	0	1	1	0	0	1	1	1	0	84	5.796	2.120
74	6	85	1	1	1	0	0	0	1	1	1	0	98	5.643	2.695
74	6	86	0	0	1	0	0	0	1	1	1	0	95	5.855	2.553
74	6	87	0	0	1	0	0	0	1	1	1	0	101	5.938	2.212
74	6	88	0	0	1	0	0	0	1	1	1	0	NA	NA	NA
89	7	91	0	0	1	0	0	0	1	1	0	0	NA	5.596	2.597
89	7	92	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	79	5.288	2.187
89	7	93	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	93	5.448	2.717
89	7	94	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	77	5.612	2.619
89	7	95	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	89	5.586	2.560
89	7	96	0	0	1	0	0	0	1	1	1	0	NA	NA	NA
89	7	97	0	0	1	0	0	0	1	1	1	0	NA	NA	NA
89	7	98	0	0	1	0	0	0	1	1	1	0	NA	NA	NA
89	7	99	0	0	1	0	0	0	1	1	1	0	NA	NA	NA
89	7	100	0	0	1	0	0	0	1	1	0	0	NA	NA	NA
89	7	101	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
102	8	104	1	0	1	0	0	0	1	1	1	0	113	6.352	3.074
102	8	105	0	0	1	0	0	0	1	1	1	0	117	5.894	2.505
102	8	106	1	0	0	0	0	0	1	1	1	0	103	6.118	2.651
102	8	107	1	0	1	0	0	0	1	1	1	0	134	6.336	2.669
102	8	108	0	0	1	0	0	0	1	1	1	0	112	6.212	2.412
102	8	109	1	0	1	0	0	0	1	1	1	0	130	6.095	2.744
102	8	110	1	0	1	0	0	0	1	1	1	0	112	6.410	2.874
102	8	111	0	0	1	0	0	0	1	1	1	0	102	5.788	2.578
102	8	112	0	0	1	0	0	0	1	1	1	0	115	5.996	2.490
102	8	113	0	0	1	0	0	0	1	1	1	0	124	5.977	2.860
102	8	114	0	0	0	0	0	0	1	1	1	0	108	5.863	2.704
102	8	115	0	0	1	0	0	0	1	1	1	0	116	6.102	2.515
102	8	116	0	0	1	0	0	0	1	1	1	0	105	5.811	2.506
102	8	117	0	0	1	0	0	0	1	1	1	0	NA	NA	NA
118	9	120	0	0	1	1	1	0	1	1	0	0	111	5.728	2.193
118	9	121	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	114	5.438	2.449
118	9	122	0	0	1	0	0	0	1	1	1	0	94	5.142	2.540
118	9	123	0	0	1	0	0	1	1	1	1	0	101	5.590	2.644
118	9	124	0	0	1	0	0	0	0	1	1	0	94	5.788	2.647
118	9	125	0	0	1	0	0	0	1	1	1	0	110	5.740	2.940
118	9	126	0	0	1	0	0	0	1	1	1	0	106	5.280	2.833
118	9	127	0	0	0	0	0	0	1	1	1	0	124	5.646	2.797
118	9	128	0	0	1	0	0	0	0	0	0	0	99	5.595	2.502
118	9	129	0	0	1	0	0	0	1	0	0	0	98	5.762	2.664
118	9	130	0	0	1	0	0	0	1	1	1	0	NA	5.697	2.305
131	10	133	0	0	0	0	0	0	1	1	1	0	118	6.339	2.800
131	10	134	0	0	1	0	0	0	1	1	1	0	121	6.007	2.869
131	10	135	0	0	1	0	0	0	1	1	1	0	122	6.044	2.612
131	10	136	0	0	1	0	0	0	1	1	1	0	113	6.517	2.632
131	10	137	1	0	0	0	0	0	1	0	0	0	NA	5.962	2.919
131	10	138	1	0	1	0	0	0	1	1	1	0	116	6.084	2.723
131	10	139	0	0	0	0	0	1	0	1	1	1	117	6.095	2.793
131	10	140	0	0	0	0	0	0	1	1	1	0	114	6.445	2.831
131	10	141	0	0	0	0	0	0	1	1	1	0	115	6.232	2.480
131	10	142	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	109	5.956	2.742
131	10	143	0	0	1	0	0	0	1	1	1	0	123	5.839	2.583
131	10	144	0	0	1	0	0	0	1	1	1	1	112	6.016	2.770
131	10	145	0	0	0	0	0	0	1	1	1	0	110	5.895	2.421
131	10	146	0	0	1	0	0	0	1	1	1	0	98	6.019	2.971
131	10	147	0	0	0	0	0	0	1	1	1	0	103	6.505	2.749
131	10	148	0	0	0	0	0	0	1	1	1	0	100	5.969	2.724
149	11	151	0	0	1	0	0	0	1	1	1	0	NA	5.727	2.978
149	11	152	0	0	1	0	0	0	1	1	1	0	NA	NA	NA
153	12	155	0	0	1	0	0	0	1	1	1	0	91	6.049	3.183
153	12	156	0	0	1	0	0	0	1	1	1	0	95	6.094	2.948
153	12	157	0	0	1	0	0	0	1	1	1	0	109	5.916	3.146
153	12	158	0	0	1	0	0	0	1	1	1	1	94	6.021	3.017
153	12	159	0	0	1	0	0	0	1	1	1	0	115	5.849	3.164
153	12	160	0	0	1	0	0	0	1	1	1	1	94	5.833	2.737
153	12	161	0	0	1	0	0	0	1	1	1	0	85	5.924	2.915
153	12	162	0	0	1	0	0	0	1	1	1	1	94	5.624	2.614
153	12	163	0	1	1	0	0	0	1	1	1	1	87	6.181	3.213
153	12	164	0	0	1	0	0	0	1	1	1	1	100	5.690	2.680
153	12	165	0	0	1	0	0	0	1	1	1	1	115	5.832	3.350
153	12	166	0	0	0	0	0	0	1	1	0	1	102	6.075	2.682
153	12	167	0	0	1	0	0	0	1	1	1	0	120	5.869	2.970
153	12	168	0	0	0	0	0	0	1	1	1	0	NA	NA	NA
169	13	171	1	0	1	1	0	0	1	1	1	0	87	5.590	3.360
169	13	172	0	0	1	0	0	0	1	1	1	0	80	5.673	2.606
169	13	173	0	0	1	0	0	0	0	0	1	0	91	5.875	2.452
169	13	174	0	0	0	0	0	0	1	1	0	0	79	5.622	2.566
169	13	175	0	0	1	0	0	1	1	1	1	0	82	5.960	3.270
169	14	177	1	0	1	0	0	0	1	1	1	0	83	5.640	2.411
169	14	178	0	0	1	0	0	0	1	1	1	0	84	5.668	3.251
169	14	179	1	0	1	0	0	0	1	1	1	0	79	5.704	3.227
169	14	180	0	0	1	0	0	0	1	0	1	0	103	6.024	2.972
169	14	181	0	0	1	0	0	0	1	1	1	0	76	5.756	2.742
169	14	182	1	0	1	0	0	0	0	1	1	0	85	6.049	2.998
169	14	183	0	0	1	0	0	0	1	1	1	0	74	5.880	3.246
169	14	184	0	0	1	0	0	0	1	1	1	0	102	5.978	2.655
169	14	185	1	0	1	0	0	0	1	1	1	0	83	5.532	2.716
169	14	186	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	75	5.619	2.358
169	14	187	1	0	1	0	0	0	1	1	1	0	NA	NA	NA
169	15	189	0	0	1	0	0	0	1	1	1	0	74	5.697	3.234
169	15	190	1	1	1	1	0	0	1	1	1	0	78	5.710	2.277
169	15	191	1	0	1	0	0	0	1	0	1	0	100	6.318	3.650
169	15	192	0	0	1	0	0	0	1	1	1	0	87	5.969	2.988
169	15	193	0	0	1	1	0	1	1	0	1	0	96	6.020	2.791
169	15	194	0	0	1	0	0	0	1	1	1	1	90	5.950	2.619
169	15	195	1	0	1	0	0	0	1	1	1	0	83	6.299	3.515
169	15	196	1	0	0	0	0	0	1	1	1	0	80	5.410	2.354
169	15	197	1	0	1	0	0	0	1	1	1	0	90	5.717	3.085
169	15	198	1	0	1	0	0	0	1	1	1	0	90	5.762	3.013
169	15	199	0	0	0	0	0	0	1	0	0	0	87	5.685	2.858
169	15	200	0	0	1	0	0	0	1	1	1	0	86	5.641	2.565
169	15	201	0	0	1	0	0	0	1	1	1	0	80	5.950	2.423
169	15	202	0	0	1	0	0	0	1	1	1	0	NA	5.775	2.670
169	15	203	1	1	0	0	0	1	1	1	1	0	75	5.859	2.837
169	15	204	0	0	1	0	0	0	1	1	1	1	NA	NA	NA
169	15	205	1	0	1	0	0	0	1	1	1	0	NA	NA	NA
169	15	206	0	0	1	0	0	0	1	1	1	1	NA	NA	NA
207	16	209	1	0	0	0	1	0	1	1	1	0	111	5.798	2.518
207	16	210	0	0	1	0	0	0	1	1	1	0	117	6.021	2.657
207	16	211	0	0	0	0	0	0	1	0	0	0	109	5.871	2.771
212	17	214	0	1	1	0	0	0	1	1	1	0	125	5.934	3.060
212	17	215	0	0	1	1	0	0	1	1	1	0	122	5.825	3.232
212	17	216	0	1	1	1	0	0	1	1	1	0	107	6.003	2.974
212	17	217	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	118	5.562	3.475
212	17	218	0	1	1	1	0	0	1	1	1	0	119	5.946	2.923
212	17	219	0	0	1	0	0	0	1	1	0	0	120	5.320	2.828
212	17	220	0	0	1	0	0	0	1	1	1	0	110	5.706	2.578
212	17	221	0	0	1	0	0	0	1	1	1	0	100	5.547	2.652
212	17	222	0	0	0	0	0	1	1	0	0	0	106	5.515	2.708
212	17	223	0	0	1	1	0	0	1	1	1	0	105	5.555	2.862
212	17	224	0	0	1	0	0	0	1	1	1	0	NA	NA	NA
212	17	225	0	0	1	0	0	0	1	1	1	0	NA	NA	NA
226	18	228	0	1	1	0	0	0	1	1	0	1	89	6.044	3.091
226	18	229	0	0	1	0	0	0	1	1	1	1	86	5.720	2.700
226	18	230	1	0	1	0	0	0	1	1	1	0	101	5.912	3.142
226	18	231	0	0	1	0	0	0	1	1	1	0	100	5.910	3.224
226	18	232	1	0	1	0	0	0	1	0	1	0	90	5.822	2.543
226	18	233	1	0	1	0	0	0	1	1	1	0	108	5.814	2.668
226	18	234	0	1	1	0	0	0	0	0	1	0	99	6.067	3.154
226	18	235	0	0	1	0	0	0	1	0	0	0	103	5.850	3.239
226	18	236	0	0	1	0	0	0	1	1	1	0	84	6.112	3.067
226	18	237	0	0	1	0	0	0	1	1	1	0	86	5.628	2.598
226	18	238	0	0	1	0	0	0	1	1	1	0	NA	NA	NA
239	19	241	1	0	1	0	0	0	0	0	0	1	81	5.721	2.649
239	19	242	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	93	5.847	2.240
239	19	243	0	0	1	0	0	0	0	1	1	0	84	5.974	3.258
239	19	244	0	0	1	0	0	0	1	1	1	0	77	5.842	3.101
239	19	245	0	0	1	0	0	0	1	1	1	0	88	5.837	2.612
239	19	246	0	0	1	0	0	1	1	1	1	0	78	5.932	2.364
239	19	247	0	0	1	0	0	1	1	1	1	1	88	5.845	3.039
239	19	248	0	0	1	0	0	1	1	1	1	0	75	5.526	2.648
249	20	251	0	0	1	0	0	0	1	1	1	0	88	5.961	2.602
249	20	252	0	0	1	0	0	0	1	1	1	0	97	6.018	2.600
249	20	253	0	0	1	0	0	0	1	1	1	0	94	5.686	3.035
249	20	254	0	0	1	0	0	0	1	1	1	0	100	6.179	2.697
249	20	255	0	1	1	1	0	0	1	1	1	0	97	5.873	2.478
249	20	256	0	0	1	0	0	1	1	1	1	0	99	5.702	2.578
249	20	257	0	0	1	0	0	0	1	1	1	0	104	6.001	2.697
249	20	258	0	0	1	0	0	0	1	1	1	0	96	5.627	2.959
249	20	259	0	0	0	0	0	0	1	1	0	0	98	5.920	2.820
249	20	260	0	0	1	0	0	0	1	1	1	0	NA	NA	NA
249	20	261	0	0	1	0	0	0	1	1	1	0	NA	NA	NA
262	21	264	0	0	1	0	0	0	0	1	1	0	95	5.719	2.757
262	21	265	0	0	1	0	1	0	1	1	1	0	104	5.540	3.159
262	21	266	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	115	5.858	2.812
262	21	267	0	0	1	0	0	0	1	1	1	0	89	6.034	2.915
262	21	268	0	0	1	0	0	0	1	1	1	0	116	5.984	3.408
262	21	269	0	0	1	0	0	0	0	0	1	0	100	5.886	3.085
262	21	270	0	1	1	0	0	0	1	1	1	0	85	5.615	2.613
262	21	271	0	0	1	0	0	0	1	1	1	0	120	6.127	2.747
262	21	272	0	0	1	0	0	0	1	1	1	0	112	5.469	2.809
262	21	273	0	0	1	0	0	0	1	1	1	0	107	5.599	2.459
262	21	274	0	0	1	0	0	0	1	1	1	0	88	5.686	2.589
262	21	275	0	0	1	0	0	0	1	1	1	0	NA	NA	NA
276	22	278	0	0	1	0	0	0	1	1	1	0	75	5.852	2.881
276	22	279	0	0	1	0	0	0	1	1	1	0	79	5.544	2.632
276	22	280	0	0	1	0	0	0	1	1	1	0	89	5.530	2.594
276	22	281	0	0	0	0	1	0	0	0	1	0	82	5.572	2.604
276	22	282	0	0	0	0	0	1	1	1	0	0	87	5.948	2.719
276	22	283	0	0	0	0	0	0	1	1	1	0	73	5.398	2.932
276	22	284	0	0	0	0	0	0	1	1	1	0	86	6.062	2.795
276	22	285	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	87	6.389	3.069
276	22	286	0	0	1	0	0	0	1	1	1	0	74	5.529	2.667
276	22	287	0	0	1	0	0	0	1	1	1	1	NA	5.715	2.322
276	22	288	0	0	0	0	0	0	1	1	1	0	88	5.718	2.628
276	22	289	0	0	1	0	0	1	1	1	1	0	83	5.641	2.704
276	22	290	0	0	0	0	0	0	1	1	1	0	72	5.359	2.327
276	22	291	0	0	1	0	0	0	1	1	1	0	NA	NA	NA
276	23	293	0	0	0	0	0	0	1	1	0	0	80	5.658	2.574
276	23	294	0	0	0	0	0	0	1	1	1	0	89	5.770	2.875
276	23	295	0	0	0	0	0	0	1	1	0	0	96	5.743	2.734
276	23	296	0	0	1	0	0	0	1	1	0	0	96	5.902	2.617
276	23	297	0	0	0	0	0	0	1	1	1	0	100	5.942	3.248
298	24	300	0	0	0	0	0	0	0	1	1	0	84	5.935	3.061
298	24	301	0	0	0	0	0	0	1	1	1	0	109	5.567	3.084
298	24	302	1	0	1	0	0	0	1	1	1	0	88	6.133	2.965
298	24	303	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	105	5.539	2.799
298	24	304	1	0	1	0	0	1	1	1	1	0	94	5.585	2.546
298	24	305	0	0	1	0	0	0	1	1	1	0	100	5.794	2.828
298	24	306	0	0	1	0	0	0	1	1	1	0	99	5.678	2.703
298	24	307	0	0	1	0	0	1	1	1	1	0	103	5.547	2.333
298	24	308	1	0	1	0	0	1	1	1	1	0	90	5.240	2.752
298	24	309	0	0	1	0	0	1	0	0	1	0	83	5.703	2.732
298	24	310	0	0	1	0	0	1	1	1	1	0	86	5.863	2.404
298	24	311	0	0	1	0	0	0	1	1	1	0	103	5.735	2.628
298	24	312	0	0	0	0	0	0	1	1	1	0	99	5.474	2.695
298	24	313	0	0	1	0	0	0	1	1	1	0	83	5.661	2.858
298	24	314	0	0	1	0	0	0	1	1	1	0	96	5.799	3.250
298	24	315	0	1	0	0	0	1	0	0	0	0	89	5.674	2.264
298	24	316	1	0	1	0	0	0	1	1	1	0	101	5.884	2.819
298	24	317	0	0	1	0	0	0	1	1	1	0	95	5.408	2.459
298	24	318	0	0	1	0	0	1	0	1	0	0	85	5.523	2.371
298	24	319	0	0	1	0	0	1	1	1	1	0	93	5.625	2.709
298	24	320	0	0	1	0	0	1	1	1	1	0	89	5.791	2.578
298	24	321	0	0	1	0	0	1	1	1	1	0	86	5.730	2.410
298	24	322	0	0	1	0	0	0	1	1	1	0	93	5.520	2.184
298	24	323	1	0	1	0	0	1	1	1	1	0	90	5.402	2.246
298	24	324	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	5.930	3.012
298	24	325	0	0	1	0	0	1	1	1	1	0	100	5.405	2.463
298	24	326	0	0	1	0	0	1	1	1	1	0	81	5.501	2.353
298	24	327	0	0	1	0	0	0	1	1	1	0	94	5.452	2.576
328	25	330	0	0	1	0	0	0	1	1	1	0	107	5.895	2.539
328	25	331	0	0	1	0	0	1	1	0	1	0	107	5.962	3.701
328	25	332	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	92	6.074	2.427
328	25	333	0	0	1	0	0	0	1	1	1	0	85	5.398	2.664
328	25	334	0	0	1	0	0	0	1	0	1	0	94	6.103	2.333
328	25	335	0	0	1	0	0	0	1	1	1	0	100	5.962	2.487
328	25	336	1	0	1	0	0	0	1	1	1	0	116	5.974	2.438
328	25	337	0	0	1	0	0	0	1	1	1	0	92	5.892	2.333
328	25	338	0	0	1	0	0	0	1	0	1	0	113	5.998	2.742
328	25	339	1	0	1	0	0	0	1	1	1	0	104	5.849	2.620
328	25	340	0	0	1	0	0	0	1	1	1	0	NA	NA	NA
341	26	343	0	0	1	0	0	0	0	1	1	0	NA	5.731	2.670
29	27	344	0	1	1	0	1	0	1	1	1	0	103	5.931	2.598
29	27	345	0	0	1	0	0	0	1	1	1	0	94	NA	NA
29	27	346	0	0	1	0	0	0	1	1	1	0	110	NA	NA
57	28	347	0	0	1	0	0	0	1	1	1	0	115	5.933	2.800
57	28	348	0	1	0	0	0	0	0	1	1	0	105	5.663	2.584
57	28	349	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	131	6.238	2.344
57	28	350	0	0	1	0	0	0	1	1	1	0	111	5.762	2.902
57	28	351	0	0	1	0	0	0	1	1	1	0	119	5.744	2.533
57	28	352	0	0	1	0	0	1	1	1	1	0	89	NA	NA
60	29	353	0	0	1	0	0	1	1	1	1	0	106	5.539	2.764
60	29	354	0	0	1	0	0	0	1	1	1	0	122	5.896	2.811
60	29	355	0	0	1	0	0	1	1	1	1	0	112	5.728	2.795
60	29	356	0	0	0	0	0	0	1	0	0	1	93	5.476	2.060
60	29	357	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	119	5.690	2.462
60	29	358	0	0	0	0	0	1	1	1	1	0	97	NA	NA
91	30	359	0	0	1	0	0	0	1	1	1	0	85	5.609	2.183
91	30	360	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	92	5.775	2.296
91	30	361	1	0	0	0	0	0	1	1	0	0	84	5.700	2.127
91	30	362	0	1	1	0	0	0	1	0	1	0	85	NA	NA
91	30	363	0	0	1	0	0	0	1	1	1	0	75	5.634	2.189
91	30	364	0	0	1	0	0	0	1	1	1	0	74	5.533	2.298
91	30	365	0	0	1	0	0	0	1	1	1	0	NA	NA	NA
76	31	366	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	92	6.169	2.336
76	31	367	0	1	0	0	0	0	1	1	1	0	91	5.992	2.289
76	31	368	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	105	6.431	2.455
76	31	369	0	0	1	0	0	0	1	0	1	0	105	5.834	2.402
76	31	370	0	0	1	0	0	0	1	1	1	0	108	6.341	2.440
76	31	371	0	0	1	0	1	1	1	0	1	0	110	6.448	2.687
76	31	372	0	1	0	0	0	0	1	1	1	0	NA	NA	NA
37	32	373	0	0	1	0	0	0	1	1	1	0	96	5.435	2.267
37	32	374	0	0	1	0	0	0	1	1	1	0	93	5.365	2.179
37	32	375	0	0	1	0	0	0	1	1	1	0	97	5.577	2.381
37	32	376	0	0	1	0	0	0	1	1	0	0	97	5.685	2.232
37	32	377	0	0	1	0	0	0	1	1	0	0	109	5.682	2.802
37	32	378	0	0	1	0	0	0	1	1	0	0	96	NA	NA
37	32	379	0	0	1	0	0	0	1	1	1	0	118	NA	NA
37	32	380	0	0	1	0	0	0	1	1	1	0	90	NA	NA
38	33	381	0	0	1	0	0	0	1	1	1	0	94	5.262	2.855
38	33	382	0	0	1	0	0	0	1	1	1	0	103	5.949	2.338
38	33	383	0	0	1	0	0	0	1	1	1	0	89	NA	NA
38	33	384	0	0	1	0	0	0	1	1	1	0	120	NA	NA
38	33	385	0	0	1	0	0	0	1	1	1	0	111	5.591	2.572
38	33	386	0	0	1	0	1	0	1	1	1	0	84	5.569	2.257
38	33	387	0	0	1	0	0	0	1	1	1	0	86	5.248	2.175
38	33	388	0	0	1	0	0	0	1	1	1	0	87	NA	NA
35	34	389	0	0	1	0	0	0	1	1	1	0	78	5.465	2.095
35	34	390	0	1	1	0	0	0	1	1	1	0	73	5.499	2.043
35	34	391	0	0	1	1	0	0	1	1	1	0	87	5.740	2.268
35	34	392	0	0	1	1	0	0	1	1	1	0	79	5.948	2.360
35	34	393	0	0	1	0	0	0	1	1	1	0	101	5.549	2.478
35	34	394	0	0	0	0	0	0	1	1	1	0	86	5.713	2.889
35	34	395	0	0	1	0	0	0	1	1	1	0	NA	NA	NA
71	35	396	0	0	1	0	0	0	1	1	1	0	98	6.062	2.840
71	35	397	0	0	1	0	0	1	1	1	1	0	89	5.774	2.374
71	35	398	0	0	1	0	0	1	1	1	1	0	101	NA	NA
71	35	399	0	0	0	0	0	0	1	1	1	0	96	6.260	3.063
71	35	400	0	0	1	0	0	0	1	1	1	0	NA	NA	NA
71	35	401	0	0	1	0	0	0	1	1	0	0	NA	NA	NA
19	36	402	0	0	0	1	0	0	1	1	0	1	73	5.134	2.147
19	36	403	0	0	1	0	0	0	1	0	1	0	85	5.170	2.148
77	37	404	0	0	1	0	0	1	1	1	1	0	87	5.965	2.463
77	37	405	1	0	1	0	0	0	1	1	1	0	84	5.383	2.257
77	37	406	0	0	1	0	0	0	1	1	1	0	74	5.314	2.860
147	38	407	0	0	1	0	0	1	1	1	1	0	96	6.187	2.467
147	38	408	0	1	1	0	0	0	1	1	1	0	82	5.773	2.828
147	38	409	0	0	1	0	0	0	1	1	1	0	81	5.731	2.661
147	38	410	0	0	1	0	0	0	1	1	1	0	94	5.684	2.731
147	38	411	0	0	1	0	0	0	1	1	1	0	73	5.829	2.568
147	38	412	0	0	1	0	0	0	1	1	1	0	NA	NA	NA
147	38	413	0	0	1	0	0	0	1	1	1	0	NA	NA	NA
147	38	414	1	0	1	0	0	0	1	1	1	0	NA	NA	NA
147	38	415	0	0	1	0	0	0	1	0	0	0	NA	NA	NA
130	39	416	0	0	1	0	0	0	1	1	1	0	90	6.066	2.436
152	40	417	1	0	1	0	0	1	1	1	1	0	71	5.819	2.533
152	40	418	1	0	1	0	0	0	1	1	1	0	78	5.373	2.177
152	40	419	0	0	1	0	0	0	1	1	1	0	115	5.724	2.513
152	40	420	0	0	1	0	0	0	1	1	1	0	97	5.703	2.317
152	40	421	1	0	1	0	0	0	1	1	1	0	NA	NA	NA
267	41	422	0	0	1	1	0	0	1	1	1	0	104	5.734	2.539
267	41	423	0	0	1	0	0	0	1	1	1	1	98	5.855	2.400
184	42	424	0	0	0	0	0	0	1	0	0	0	79	5.958	2.727
184	42	425	0	0	1	0	0	1	1	1	1	0	88	5.789	2.971
184	42	426	1	0	1	0	0	0	1	1	1	0	95	5.840	2.613
184	42	427	0	0	1	0	0	0	1	1	1	0	98	5.971	2.673
184	42	428	0	0	0	0	0	0	1	1	1	0	99	5.715	2.479
184	42	429	0	0	1	0	0	0	1	1	1	0	94	5.738	2.695
184	42	430	0	0	1	0	0	0	1	1	1	0	102	5.919	2.613
195	43	431	1	0	0	0	0	1	1	0	0	0	102	5.592	2.734
236	44	432	1	0	1	0	0	0	1	1	1	0	94	6.156	2.389
324	45	433	0	0	1	0	0	0	1	1	1	0	100	5.835	2.624
324	45	434	0	1	1	0	0	0	1	1	1	0	84	5.712	2.329
324	45	435	1	0	0	0	0	0	1	1	1	0	106	5.646	2.229
324	45	436	1	0	1	0	0	0	1	1	1	0	78	5.770	2.502
324	45	437	1	0	1	0	0	0	1	1	1	0	97	5.591	2.203
324	45	438	1	0	1	0	0	0	1	1	1	0	110	5.764	2.121
324	45	439	0	0	1	0	0	0	1	1	1	0	100	5.568	3.039
324	45	440	0	0	1	0	0	0	1	1	1	0	96	5.565	2.157
164	46	441	0	0	1	0	0	0	1	0	1	1	101	5.687	2.664
164	46	442	0	0	1	0	0	0	1	1	1	1	100	5.692	2.741
280	47	443	0	0	1	0	0	0	1	1	1	0	89	5.537	3.162
280	47	444	0	0	1	0	0	0	1	1	1	1	88	5.668	2.841
280	47	445	0	0	1	0	0	0	1	1	1	0	69	5.556	2.915
280	47	446	0	0	0	0	0	0	1	1	1	0	86	5.662	3.254
320	48	447	0	0	1	0	0	1	1	1	1	0	97	5.821	2.565
320	48	448	0	0	1	0	0	0	1	1	1	0	102	5.986	2.491
320	48	449	0	0	1	0	0	0	1	1	1	0	98	5.525	2.591
320	48	450	0	0	1	0	0	1	1	1	1	0	100	5.815	2.353
320	48	451	1	0	1	0	0	1	1	1	1	0	94	6.013	2.380
320	48	452	0	0	0	0	0	0	1	1	1	0	96	5.864	2.212
165	49	453	1	0	1	0	0	0	1	1	1	1	78	5.890	2.443
165	49	454	0	0	0	0	0	0	1	1	1	1	102	5.963	2.368
331	50	455	0	0	1	0	0	1	1	1	1	0	125	6.137	2.692
331	50	456	0	0	0	0	0	0	1	0	1	1	105	5.676	2.536
331	50	457	0	0	1	0	0	0	1	1	1	0	113	6.201	2.471
331	50	458	0	0	1	0	0	1	1	1	1	0	110	5.986	2.614
331	50	459	1	0	0	0	1	1	1	1	0	0	103	5.946	2.605
241	51	460	0	0	1	0	0	0	1	1	1	0	75	6.132	2.553
241	51	461	1	0	1	0	0	0	1	1	1	0	79	5.852	2.462
343	52	462	0	0	1	0	0	1	1	1	1	0	87	5.886	2.795
343	52	463	0	0	1	0	0	0	1	1	1	0	102	6.156	2.595
343	52	464	0	0	1	0	0	1	1	1	1	0	120	5.226	2.394
343	52	465	0	0	1	0	0	1	1	1	0	0	128	5.364	2.821
343	52	466	0	0	1	0	0	0	1	1	1	0	102	5.496	2.621
343	52	467	0	0	1	0	0	1	1	1	0	0	115	5.414	2.570
389	53	468	0	0	1	0	0	0	1	1	1	0	103	6.177	2.511
389	53	469	0	0	1	0	0	0	1	1	1	0	105	5.626	2.310
377	54	470	0	0	1	0	0	0	1	1	1	0	81	5.851	2.149
377	54	471	1	0	1	0	0	0	1	1	1	0	80	5.403	2.676
463	55	472	0	0	0	0	0	1	1	1	1	0	120	5.906	2.433
463	55	473	0	1	0	0	0	0	1	1	0	0	75	5.944	2.433
463	55	474	0	0	1	0	0	0	1	1	1	0	110	6.075	2.629
463	55	475	0	1	1	0	0	1	1	1	1	0	78	5.650	2.165
463	55	476	0	0	1	0	0	1	1	1	1	0	75	5.274	2.242
463	55	477	1	0	1	0	0	0	1	1	1	0	82	5.814	2.227
463	55	478	0	1	1	0	0	0	1	1	1	0	121	5.873	2.305
463	55	479	0	0	1	0	0	1	1	1	1	0	115	5.647	2.740
463	55	480	0	0	0	0	0	0	1	1	1	0	116	5.723	2.492
463	55	481	0	0	1	0	0	0	1	1	1	0	104	5.776	2.307
463	55	482	0	0	1	0	0	1	1	1	1	0	112	5.923	2.459
463	55	483	0	0	1	0	0	1	1	1	1	0	121	5.809	2.481
375	56	484	0	0	1	0	0	0	1	1	1	0	102	5.456	2.260
375	56	485	0	0	1	0	0	0	1	1	1	0	112	5.613	2.338
462	57	486	0	0	1	0	0	0	1	1	1	0	92	5.728	2.958
462	57	487	0	0	1	0	0	0	1	1	1	0	99	5.881	2.471
462	57	488	0	0	1	0	0	0	1	1	1	0	93	5.869	2.062
462	57	489	0	0	1	0	0	0	1	1	1	0	110	NA	NA
408	58	490	0	1	1	0	0	0	1	1	1	0	107	5.644	2.681
408	58	491	0	0	1	1	0	0	1	1	1	0	74	5.826	2.594
408	58	492	0	0	1	1	0	0	1	1	1	0	110	5.901	2.642
408	58	493	0	0	1	0	0	0	1	1	1	0	95	5.999	2.512
408	58	494	0	0	1	1	0	0	1	1	1	0	92	5.396	2.269
392	59	495	0	1	1	0	0	0	1	1	1	0	93	6.029	2.284
392	59	496	0	0	1	0	0	0	1	1	1	0	87	5.591	2.202
392	59	497	0	0	0	0	0	0	1	1	0	0	84	5.777	2.200
392	59	498	0	0	1	0	0	0	1	1	1	0	80	6.262	2.095
392	59	499	0	0	1	1	0	0	1	1	1	0	86	5.966	2.079
392	59	500	0	0	1	0	0	0	1	1	1	0	NA	6.083	2.597
392	59	501	0	0	1	0	0	0	1	1	1	0	88	5.528	2.582
392	59	502	0	0	1	0	0	0	1	1	1	0	92	5.703	2.277
392	59	503	0	0	1	0	0	0	0	0	1	0	101	6.116	2.369
376	60	504	0	0	1	0	0	0	1	1	0	0	109	5.724	2.859
376	60	505	0	1	1	0	0	0	1	1	1	0	84	5.555	2.244
376	60	506	0	0	1	0	0	0	1	1	0	0	100	5.457	2.192
376	60	507	0	0	1	0	0	0	1	1	0	0	117	5.603	2.586
376	60	508	0	0	1	0	0	0	1	1	1	0	116	5.917	2.364
376	60	509	0	0	1	0	0	0	1	1	1	0	112	6.040	2.328
376	60	510	0	0	1	0	0	1	1	1	1	0	92	5.608	2.443
376	60	511	0	0	1	0	0	0	1	1	0	0	102	5.628	2.208
376	60	512	0	0	1	0	0	0	1	1	0	0	116	5.690	2.249


More information about the R-sig-mixed-models mailing list