[R-sig-ME] lmer vs glmmPQL
Federico Calboli
f.calboli at imperial.ac.uk
Tue Jun 23 18:18:52 CEST 2009
Hi All,
I'm doing a simple logistic regression with one fixed and one random
effects, and I'm comparing the results I got from lmer() and
glmmPQL(). I'm finding that lmer gives my a "better" p-value for my
fixed effects. Because I'm a paranoid old man I'd go for the glmmPQL
results then, but my collaborators are less paranoid and I'm sure
they'd prefer the results from lmer. Am I too conservative? (I ralise
it looks like I'm asking for counselling more than advice, but there
you go...).
Best,
Federico
My models:
mod1 = glmmPQL(y ~ genotype, random = ~1|block, family = binomial, data)
mod2 = lmer(y ~ genotype + (1|block), family = binomial, data)
my data:
> data
genotype block y.1 y.2
1 A a 16 29
2 B a 19 26
3 C a 23 23
4 A c 6 24
5 B c 11 11
6 C c 13 14
7 A b 4 17
8 B b 10 8
9 C b 12 6
> data[[1]]
[1] A B C A B C A B C
attr(,"contrasts")
[,1] [,2]
B 1 -1
A -2 0
C 1 1
Levels: B A C
my results:
> summary(mod1)
Linear mixed-effects model fit by maximum likelihood
Data: dat
AIC BIC logLik
NA NA NA
Random effects:
Formula: ~1 | block
(Intercept) Residual
StdDev: 1.285532e-06 0.8077838
Variance function:
Structure: fixed weights
Formula: ~invwt
Fixed effects: y ~ genotype
Value Std.Error DF t-value p-value
(Intercept) -0.3327269 0.12516679 4 -2.658269 0.0565
genotype1 0.3288359 0.09065856 4 3.627190 0.0222
genotype2 0.1138920 0.14947659 4 0.761938 0.4885
Correlation:
(Intr) gntyp1
genotype1 -0.068
genotype2 -0.027 -0.019
Standardized Within-Group Residuals:
Min Q1 Med Q3 Max
-1.0807836 -0.8047002 -0.4620287 0.8940787 1.5832300
Number of Observations: 9
Number of Groups: 3
> summary(mod2)
Generalized linear mixed model fit by the Laplace approximation
Formula: y ~ genotype + (1 | block)
Data: dat
AIC BIC logLik deviance
13.92 14.71 -2.960 5.919
Random effects:
Groups Name Variance Std.Dev.
block (Intercept) 0 0
Number of obs: 9, groups: block, 3
Fixed effects:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.33273 0.12652 -2.630 0.008541 **
genotype1 0.32884 0.09164 3.588 0.000333 ***
genotype2 0.11389 0.15109 0.754 0.450965
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Correlation of Fixed Effects:
(Intr) gntyp1
genotype1 -0.068
genotype2 -0.027 -0.019
--
Federico C. F. Calboli
Department of Epidemiology and Public Health
Imperial College, St. Mary's Campus
Norfolk Place, London W2 1PG
Tel +44 (0)20 75941602 Fax +44 (0)20 75943193
f.calboli [.a.t] imperial.ac.uk
f.calboli [.a.t] gmail.com
More information about the R-sig-mixed-models
mailing list