[R-sig-ME] Confidence intervals for effects in glmer()
Ben Bolker
bolker at ufl.edu
Tue Jun 9 01:40:10 CEST 2009
It depends on what approximations you're willing to accept.
Crudely doing +/- 2 standard deviations, or (DANGER DANGER)
using the 'known' df to compute t-scores (the "gm1" example
given in ?glmer has a fairly straightforward structure, with
15 groups):
library(lme4)
example(glmer)
s <- summary(gm1)@coefs
fac <- 2
s[,"Estimate"]+fac*outer(c(-1,1),s[,"Std. Error"])
fac <- qt(0.975,df=14)
s[,"Estimate"]+fac*outer(c(-1,1),s[,"Std. Error"])
Does anyone know the current status of mcmcsamp,
either for LMMs or for GLMMs ... ?
Ben Bolker
Robert A. LaBudde wrote:
> This may be blindingly obvious to the casual observer, but I'm
> chagrined to admit I'm stumped.
>
> I'm fitting a simple mixed effect logistic model using 'lme4':
>
> require('lme4')
> fit4<- glmer(x ~ 1 + 1|lab, data=eg, nAGQ=5, family='binomial')
> summary(fit4)
> ranef(fit4)
>
> I would like 95% confidence intervals on 'lab' and the residuals effects.
>
> Using lme() in 'nlme', I had the function intervals() available. Now I don't.
>
> Any hints to de-perplex a novice?
>
> Thanks.
> ================================================================
> Robert A. LaBudde, PhD, PAS, Dpl. ACAFS e-mail: ral at lcfltd.com
> Least Cost Formulations, Ltd. URL: http://lcfltd.com/
> 824 Timberlake Drive Tel: 757-467-0954
> Virginia Beach, VA 23464-3239 Fax: 757-467-2947
>
> "Vere scire est per causas scire"
>
> _______________________________________________
> R-sig-mixed-models at r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models
--
Ben Bolker
Associate professor, Biology Dep't, Univ. of Florida
bolker at ufl.edu / www.zoology.ufl.edu/bolker
GPG key: www.zoology.ufl.edu/bolker/benbolker-publickey.asc
More information about the R-sig-mixed-models
mailing list