[R-sig-ME] Rasch with lme4
Reinhold Kliegl
reinhold.kliegl at gmail.com
Mon Jun 8 17:00:08 CEST 2009
Conditional modes (generated from the model parameters and the data)
are not independent observations. Therefore, only the second method is
valid.
Reinhold Kliegl
On 08.06.2009, at 13:04, Jeroen Ooms wrote:
> I have tried to use lme4 to analyze IRT like datasets, but now I am
> confused. I have a data set with intelligence items (i.e. score 0 or
> 1), for
> completely crossed subjects and items. Furthermore, the data
> contains some
> personality scores on the subject level. Actually the data is more
> complicated than this, but let's keep it simple for now. My research
> question is whether a personality charcteristic, say extraversion, is
> related to intelligence. My question is how I should incorporate the
> extraversion variable in the analysis.
> When I analyse this data using the Rasch model, I usually first fit
> the
> model, then extract the 'latent trait scores', and relate these to the
> extraversion scores. I could do the same with lmer:
>
> myModel <- lmer(y~1+(1|item)+(1|subject),data=mydata,
> family=binomial);
> intelligence <- ranef(myModel)$subject[[1]];
> lm(intelligence~extraversion);
>
> However, in the context of multilevel analysis, it is also possible to
> incorporate the extraversion variable directly into the model:
>
> myModel2 <- lmer(y~1+(1|item)+(1|subject)+extraversion,data=mydata,
> family=binomial);
>
> Conceptually both methods feel very similar, but they give different
> results. What is the most appropriate method? What are the
> differences in
> interpretation?
>
> Thank you!
>
> Jeroen
>
> [[alternative HTML version deleted]]
>
> _______________________________________________
> R-sig-mixed-models at r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models
More information about the R-sig-mixed-models
mailing list